ABSTRACT
Despite their importance for humans, there is little consensus on the function of antibiotics in nature for the bacteria that produce them. Classical explanations suggest that bacteria use antibiotics as weapons to kill or inhibit competitors, whereas a recent alternative hypothesis states that antibiotics are signals that coordinate cooperative social interactions between coexisting bacteria. Here we distinguish these hypotheses in the prolific antibiotic-producing genus Streptomyces and provide strong evidence that antibiotics are weapons whose expression is significantly influenced by social and competitive interactions between competing strains. We show that cells induce facultative responses to cues produced by competitors by (i) increasing their own antibiotic production, thereby decreasing costs associated with constitutive synthesis of these expensive products, and (ii) by suppressing antibiotic production in competitors, thereby reducing direct threats to themselves. These results thus show that although antibiotic production is profoundly social, it is emphatically not cooperative. Using computer simulations, we next show that these facultative strategies can facilitate the maintenance of biodiversity in a community context by converting lethal interactions between neighboring colonies to neutral interactions where neither strain excludes the other. Thus, just as bacteriocins can lead to increased diversity via rock-paper-scissors dynamics, so too can antibiotics via elicitation and suppression. Our results reveal that social interactions are crucial for understanding antibiosis and bacterial community dynamics, and highlight the potential of interbacterial interactions for novel drug discovery by eliciting pathways that mediate interference competition.
Subject(s)
Anti-Bacterial Agents/biosynthesis , Streptomyces/physiology , Streptomyces/metabolismABSTRACT
Staphylococcus aureus is a major pathogen in India causing community and nosocomial infections, but little is known about its molecular epidemiology and mechanisms of resistance in hospital settings. Here, we use whole-genome sequencing (WGS) to characterize 478 S. aureus clinical isolates (393 methicillin-resistant Staphylococcus aureus (MRSA) and 85 methicilin-sensitive Staphylococcus aureus (MSSA) collected from 17 sentinel sites across India between 2014 and 2019. Sequencing results confirmed that sequence type 22 (ST22) (142 isolates, 29.7%), ST239 (74 isolates, 15.48%), and ST772 (67 isolates, 14%) were the most common clones. An in-depth analysis of 175 clonal complex (CC) 22 Indian isolates identified two novel ST22 MRSA lineages, both Panton-Valentine leukocidin+, both resistant to fluoroquinolones and aminoglycosides, and one harboring the the gene for toxic shock syndrome toxin 1 (tst). A temporal analysis of 1797 CC22 global isolates from 14 different studies showed that the two Indian ST22 lineages shared a common ancestor in 1984 (95% highest posterior density [HPD]: 1982-1986), as well as evidence of transmission to other parts of the world. Moreover, the study also gives a comprehensive view of ST2371, a sublineage of CC22, as a new emerging lineage in India and describes it in relationship with the other Indian ST22 isolates. In addition, the retrospective identification of a putative outbreak of multidrug-resistant (MDR) ST239 from a single hospital in Bangalore that persisted over a period of 3 years highlights the need for the implementation of routine surveillance and simple infection prevention and control measures to reduce these outbreaks. To our knowledge, this is the first WGS study that characterized CC22 in India and showed that the Indian clones are distinct from the EMRSA-15 clone. Thus, with the improved resolution afforded by WGS, this study substantially contributed to our understanding of the global population of MRSA. IMPORTANCE The study conducted in India between 2014 and 2019 presents novel insights into the prevalence of MRSA in the region. Previous studies have characterized two dominant clones of MRSA in India, ST772 and ST239, using whole-genome sequencing. However, this study is the first to describe the third dominant clone, ST22, using the same approach. The ST22 Indian isolates were analyzed in-depth, leading to the discovery of two new sublineages of hospital-acquired Staphylococcus aureus in India, both carrying antimicrobial resistance genes and mutations, which limit treatment options for patients. One of the newly characterized sublineages, second Indian cluster, carries the tsst-1 virulence gene, increasing the risk of severe infections. The geographic spread of the two novel lineages, both within India and internationally, could pose a global public health threat. The study also sheds light on ST2371 in India, a single-locus variant of ST22. The identification of a putative outbreak of MDR ST239 in a single hospital in Bangalore emphasizes the need for routine surveillance and simple infection prevention and control measures to reduce these outbreaks. Overall, this study significantly contributes to our understanding of the global population of MRSA, thanks to the improved resolution afforded by WGS.
Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Retrospective Studies , India/epidemiology , Staphylococcal Infections/epidemiologyABSTRACT
Bacteriocins are usually viewed as the effective weapons of bacterial killers. However, killing competitors with bacteriocins may be not only a means of eliminating other strains, but also a crucial unappreciated mechanism promoting bacterial diversity. In the present short review, we summarize recent empirical and theoretical studies examining the role bacteriocins that may play in driving and maintaining diversity among microbes. We conclude by highlighting limitations of current models and suggest directions for future studies.
Subject(s)
Bacteriocins/metabolism , Adaptation, Biological , Antibiosis/genetics , Bacteriocins/genetics , Biodiversity , Evolution, Molecular , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Humans , Metagenome , Models, BiologicalABSTRACT
Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems.
Subject(s)
Quorum Sensing/physiology , Streptococcus pneumoniae/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriocins/genetics , Gene Expression Regulation, Bacterial , Operon , Signal TransductionABSTRACT
Mesodiencephalic dopamine neurons play central roles in the regulation of a wide range of brain functions, including voluntary movement and behavioral processes. These functions are served by distinct subtypes of mesodiencephalic dopamine neurons located in the substantia nigra pars compacta and the ventral tegmental area, which form the nigrostriatal, mesolimbic, and mesocortical pathways. Until now, mechanisms involved in dopaminergic circuit formation remained largely unknown. Here, we show that Lmx1a, Lmx1b, and Otx2 transcription factors control subtype-specific mesodiencephalic dopamine neurons and their appropriate axon innervation. Our results revealed that the expression of Plxnc1, an axon guidance receptor, is repressed by Lmx1a/b and enhanced by Otx2. We also found that Sema7a/Plxnc1 interactions are responsible for the segregation of nigrostriatal and mesolimbic dopaminergic pathways. These findings identify Lmx1a/b, Otx2, and Plxnc1 as determinants of dopaminergic circuit formation and should assist in engineering mesodiencephalic dopamine neurons capable of regenerating appropriate connections for cell therapy.Midbrain dopaminergic neurons (mDAs) in the VTA and SNpc project to different regions and form distinct circuits. Here the authors show that transcription factors Lmx1a, Lmx1b, and Otx2 control the axon guidance of mDAs and the segregation of mesolimbic and nigrostriatal dopaminergic pathways.
Subject(s)
LIM-Homeodomain Proteins/metabolism , Nerve Tissue Proteins/genetics , Receptors, Cell Surface/genetics , Transcription Factors/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Axons/physiology , Dopaminergic Neurons/metabolism , Female , Gene Expression Regulation , LIM-Homeodomain Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Transcription Factors/genetics , Ventral Tegmental Area/physiologyABSTRACT
The opportunistic pathogen Streptococcus pneumoniae is commonly carried asymptomatically in the human nasopharynx. Due to high rates of cocolonization with other pneumococcus strains, intraspecific competitive interactions partly determine the carriage duration of strains and thereby their potential to cause disease. These interactions may be mediated by bacteriocins, such as the type IIb bacteriocins encoded by the blp (bacteriocin-like peptide) locus. To understand blp diversity and evolution, we undertook a bioinformatic analysis of 4,418 pneumococcal genomes, including 168 newly sequenced genomes. We describe immense variation at all levels of genomic organization: Gene presence/absence, gene order, and allelic diversity. If we make the extreme and naive hypothesis that assumes all genes in this operon can assort randomly, this variation could lead to 10(15) distinct bacteriocin-related phenotypes, each potentially representing a unique ecological strategy; however, we provide several explanations for why this extreme is not realized. Although rarefaction analysis indicates that the number of unique strategies is not saturated, even after sampling thousands of genomes, we show that the variation is neither unbounded nor random. We delimit three bacteriocin groups, which contain group-specific bacteriocins, immunity genes, and blp operon gene order, and argue that this organization places a constraint on realized ecological strategies. We additionally show that ecological strategy diversity is significantly constrained by pneumococcal phylogeny and clonal structure. By examining patterns of association between alleles within the blp operon, we show that bacteriocin genes, which were believed to function in pairs, can be found with a broad diversity of partner alleles and immunity genes; this overall lack of allelic fidelity likely contributes to the fluid structure of this operon. Our results clarify the diversity of antagonistic ecological strategies in the global pneumococcal population and highlight the potential role of blp bacteriocins in competition within the nasopharynx.