Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Subject(s)
Autoimmunity , Dendritic Cells , Integrin alphaVbeta3 , Lupus Erythematosus, Systemic , Mice, Knockout , Signal Transduction , Toll-Like Receptor 7 , Animals , Mice , Dendritic Cells/immunology , Integrin alphaVbeta3/immunology , Integrin alphaVbeta3/metabolism , Autoimmunity/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , B-Lymphocytes/immunology , Autoantibodies/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Lymphocyte Activation/immunology , Disease Models, Animal
2.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38442270

ABSTRACT

Genome-wide association studies in systemic lupus erythematosus (SLE) have linked loss-of-function mutations in phagocytic NADPH oxidase complex (NOX2) genes, including NCF1 and NCF2, to disease pathogenesis. The prevailing model holds that reduced NOX2 activity promotes SLE via defective efferocytosis, the immunologically silent clearance of apoptotic cells. Here, we describe a parallel B cell-intrinsic mechanism contributing to breaks in tolerance. In keeping with an important role for B cell Toll-like receptor (TLR) pathways in lupus pathogenesis, NOX2-deficient B cells exhibit enhanced signaling downstream of endosomal TLRs, increased humoral responses to nucleic acid-containing antigens, and the propensity toward humoral autoimmunity. Mechanistically, TLR-dependent NOX2 activation promotes LC3-mediated maturation of TLR-containing endosomes, resulting in signal termination. CRISPR-mediated disruption of NCF1 confirmed a direct role for NOX2 in regulating endosomal TLR signaling in primary human B cells. Together, these data highlight a new B cell-specific mechanism contributing to autoimmune risk in NCF1 and NCF2 variant carriers.


Subject(s)
Lupus Erythematosus, Systemic , NADPH Oxidases , Humans , NADPH Oxidases/genetics , Genome-Wide Association Study , Autoimmunity/genetics , Endosomes , Lupus Erythematosus, Systemic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL