Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Glob Chang Biol ; 26(4): 2203-2219, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31955493

ABSTRACT

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business-as-usual representative concentration pathway (RCP) 8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end-of-century RCP8.5 conditions for temperature and pCO2 (3.5°C and 570 ppm above present-day, respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral-dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business-as-usual CO2 emission scenarios will likely extirpate thermally sensitive coral species before the end of the century, while slowing the recovery of more thermally tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

2.
Proc Biol Sci ; 286(1916): 20192153, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31795848

ABSTRACT

Marine sponges are set to become more abundant in many near-future oligotrophic environments, where they play crucial roles in nutrient cycling. Of high importance is their mass turnover of dissolved organic matter (DOM), a heterogeneous mixture that constitutes the largest fraction of organic matter in the ocean and is recycled primarily by bacterial mediation. Little is known, however, about the mechanism that enables sponges to incorporate large quantities of DOM in their nutrition, unlike most other invertebrates. Here, we examine the cellular capacity for direct processing of DOM, and the fate of the processed matter, inside a dinoflagellate-hosting bioeroding sponge that is prominent on Indo-Pacific coral reefs. Integrating transmission electron microscopy with nanoscale secondary ion mass spectrometry, we track 15N- and 13C-enriched DOM over time at the individual cell level of an intact sponge holobiont. We show initial high enrichment in the filter-feeding cells of the sponge, providing visual evidence of their capacity to process DOM through pinocytosis without mediation of resident bacteria. Subsequent enrichment of the endosymbiotic dinoflagellates also suggests sharing of host nitrogenous wastes. Our results shed light on the physiological mechanism behind the ecologically important ability of sponges to cycle DOM via the recently described sponge loop.


Subject(s)
Porifera/physiology , Symbiosis , Animals , Coral Reefs , Dinoflagellida/physiology , Nitrogen/metabolism
3.
Oecologia ; 187(1): 25-35, 2018 05.
Article in English | MEDLINE | ID: mdl-29574578

ABSTRACT

The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.


Subject(s)
Carbon Dioxide , Coral Reefs , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
4.
J Phycol ; 53(5): 951-960, 2017 10.
Article in English | MEDLINE | ID: mdl-28796903

ABSTRACT

Dinoflagellates in the genus Symbiodinium associate with a broad array of metazoan and protistian hosts. Symbiodinium-based symbioses involving bioeroding sponge hosts have received less attention than those involving popular scleractinian hosts. Certain species of common Cliona harbor high densities of an ecologically restricted group of Symbiodinium, referred to as Clade G. Clade G Symbiodinium are also known to form stable and functionally important associations with Foraminifera and black corals (Antipatharia) Analyses of genetic evidence indicate that Clade G likely comprises several distinct species. Here, we use nucleotide sequence data in combination with ecological and geographic attributes to formally describe Symbiodinium endoclionum sp. nov. obtained from the Pacific boring sponge Cliona orientalis and Symbiodinium spongiolum sp. nov. from the congeneric western Atlantic sponge Cliona varians. These species appear to be part of an adaptive radiation comprising lineages of Clade G specialized to the metazoan phyla Porifera and Cnidaria, which began prior to the separation of the Pacific and Atlantic Oceans.


Subject(s)
Dinoflagellida/classification , Dinoflagellida/physiology , Phylogeny , Porifera/physiology , Symbiosis , Animals , Atlantic Ocean , Coral Reefs , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , Dinoflagellida/genetics , Pacific Ocean , Sequence Analysis, DNA
5.
Microbiome ; 9(1): 44, 2021 02 14.
Article in English | MEDLINE | ID: mdl-33583434

ABSTRACT

BACKGROUND: Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of 13C- and 15N-labelled dissolved and particulate organic food at subcellular level in the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Halisarca caerulea. RESULTS: The two sponge species showed significant enrichment of DOM- and POM-derived 13C and 15N into their tissue over time. Microbial symbionts were actively involved in the assimilation of DOM, but host filtering cells (choanocytes) appeared to be the primary site of DOM and POM uptake in both sponge species overall, via pinocytosis and phagocytosis, respectively. Translocation of carbon and nitrogen from choanocytes to microbial symbionts occurred over time, irrespective of microbial abundance, reflecting recycling of host waste products by the microbiome. CONCLUSIONS: Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.


Subject(s)
Microbiota/physiology , Nutrients/metabolism , Porifera/metabolism , Porifera/microbiology , Symbiosis , Animals , Carbon/metabolism , Nitrogen/metabolism
6.
ISME J ; 12(5): 1308-1318, 2018 05.
Article in English | MEDLINE | ID: mdl-29386628

ABSTRACT

Some of the most aggressive coral-excavating sponges host intracellular dinoflagellates from the genus Symbiodinium, which are hypothesized to provide the sponges with autotrophic energy that powers bioerosion. Investigations of the contribution of Symbiodinium to host metabolism and particularly inorganic nutrient recycling are complicated, however, by the presence of alternative prokaryotic candidates for this role. Here, novel methods are used to study nutrient assimilation and transfer within and between the outer-layer cells of the Indopacific bioeroding sponge Cliona orientalis. Combining stable isotope labelling, transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS), we visualize and measure metabolic activity at the individual cell level, tracking the fate of 15N-ammonium and 13C-bicarbonate within the intact holobiont. We found strong uptake of both inorganic sources (especially 13C-bicarbonate) by Symbiodinium cells. Labelled organic nutrients were translocated from Symbiodinium to the Symbiodinium-hosting sponge cells within 6 h, and occasionally to other sponge cells within 3 days. By contrast, prokaryotic symbionts were not observed to participate in inorganic nutrient assimilation in the outer layers of the sponge. Our findings strongly support the metabolic interaction between the sponge and dinoflagellates, shedding light on the ecological advantages and adaptive capacity of photosymbiotic bioeroding sponges in oligotrophic marine habitats.


Subject(s)
Ammonium Compounds/metabolism , Bicarbonates/metabolism , Dinoflagellida/metabolism , Porifera/metabolism , Symbiosis , Animals , Coral Reefs , Ecosystem , Single-Cell Analysis
7.
Sci Rep ; 7(1): 10705, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878236

ABSTRACT

Excavating sponges are prominent bioeroders on coral reefs that in comparison to other benthic organisms may suffer less or may even benefit from warmer, more acidic and more eutrophic waters. Here, the photosymbiotic excavating sponge Cliona orientalis from the Great Barrier Reef was subjected to a prolonged simulation of both global and local environmental change: future seawater temperature, partial pressure of carbon dioxide (as for 2100 summer conditions under "business-as-usual" emissions), and diet supplementation with particulate organics. The individual and combined effects of the three factors on the bioerosion rates, metabolic oxygen and carbon flux, biomass change and survival of the sponge were monitored over the height of summer. Diet supplementation accelerated bioerosion rates. Acidification alone did not have a strong effect on total bioerosion or survival rates, yet it co-occurred with reduced heterotrophy. Warming above 30 °C (+2.7 °C above the local maximum monthly mean) caused extensive bleaching, lower bioerosion, and prevailing mortality, overriding the other factors and suggesting a strong metabolic dependence of the sponge on its resident symbionts. The growth, bioerosion capacity and likelihood of survival of C. orientalis and similar photosymbiotic excavating sponges could be substantially reduced rather than increased on end-of-the-century reefs under "business-as-usual" emission profiles.


Subject(s)
Coral Reefs , Ecosystem , Porifera , Animals , Biomass , Carbon Dioxide/metabolism , Global Warming , Oceans and Seas , Oxygen/metabolism , Temperature
8.
PeerJ ; 3: e820, 2015.
Article in English | MEDLINE | ID: mdl-25780772

ABSTRACT

Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes) to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca caerulea during early regeneration (0-8 h) following experimental wound infliction. Subsequently, we investigated the spatial relationship between regeneration and cell proliferation over a six-day period directly adjacent to the wound, 1 cm, and 3 cm from the wound. Cell proliferation was determined by the incorporation of 5-bromo-2'-deoxyuridine (BrdU). We demonstrate that during early regeneration, the growth fraction of the choanocytes (i.e., the percentage of proliferative cells) adjacent to the wound is reduced (7.0 ± 2.5%) compared to steady-state, undamaged tissue (46.6 ± 2.6%), while the length of the cell cycle remained short (5.6 ± 3.4 h). The percentage of proliferative choanocytes increased over time in all areas and after six days of regeneration choanocyte proliferation rates were comparable to steady-state tissue. Tissue areas farther from the wound had higher rates of choanocyte proliferation than areas closer to the wound, indicating that more resources are demanded from tissue in the immediate vicinity of the wound. There was no difference in the number of proliferative mesohyl cells in regenerative sponges compared to steady-state sponges. Our data suggest that the production of collagen-rich wound tissue is a key process in tissue regeneration for H. caerulea, and helps to rapidly occupy the bare substratum exposed by the wound. Regeneration and choanocyte renewal are competing and negatively correlated life-history traits, both essential to the survival of sponges. The efficient allocation of limited resources to these life-history traits has enabled the ecological success and diversification of sponges.

SELECTION OF CITATIONS
SEARCH DETAIL