ABSTRACT
Tisagenlecleucel, a CD19-specific autologous chimeric antigen receptor (CAR)-T cell therapy, is efficacious for the treatment of relapsed/refractory B-cell precursor acute lymphoblastic leukemia and diffuse large B-cell lymphoma. The tisagenlecleucel manufacturing process was initially developed in an academic setting and subsequently transferred to industry for qualification, validation and scaling up for global clinical trials and commercial distribution. Use of fresh leukapheresis material was recognized early on in the transfer process as a challenge with regard to establishing a global supply chain. To maximize manufacturing success rates and to overcome logistical challenges, cryopreservation was adapted into the Novartis manufacturing process from the beginning of clinical trials. Tisagenlecleucel manufactured in centralized facilities with cryopreserved leukapheresis material has been used successfully in global clinical trials at more than 50 clinical centers in 12 countries. Cryopreservation provides flexibility in scheduling leukapheresis when the patient's health is optimal to provide T cells; it also provides protection from external factors, such as shipping delays, and removes manufacturing time constraints. Several studies were performed to establish comparability of fresh versus cryopreserved leukapheresis material, to evaluate and optimize the cryopreservation process, to determine the optimal temperature and maximum hold time prior to cryopreservation and to determine the optimal temperature range for shipment and storage. Using the current validated industry manufacturing process, high success rates were achieved with regard to manufacturing tisagenlecleucel batches that met specifications and were released to patients. Consistent product quality and positive clinical outcomes support the use of cryopreserved non-mobilized peripheral mononuclear blood cells collected using leukapheresis for CAR-T cell manufacturing.
Subject(s)
Cryopreservation/methods , Leukapheresis , Manufactured Materials , Receptors, Antigen, T-Cell , Antigens, CD19/immunology , Cryopreservation/standards , Drug Industry/methods , Drug Industry/trends , Drug Stability , Drug Storage , Humans , Immunotherapy, Adoptive/methods , Leukapheresis/methods , Leukapheresis/trends , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen , T-Lymphocytes/immunology , TemperatureABSTRACT
Strategies aimed at reducing cerebral accumulation of the amyloid-ß (Aß) peptides have therapeutic potential in Alzheimer's disease (AD). Aß immunization has proven to be effective at promoting Aß clearance in animal models but adverse effects have hampered its clinical evaluation. The first anti-Aß immunization clinical trial, which assessed a full-length Aß1-42 vaccine, increased the risk of encephalitis most likely because of autoimmune pro-inflammatory T helper 1 (Th1) response against all forms of Aß. Immunization against less abundant but potentially more pathologically relevant Aß products, such as N-terminally-truncated pyroglutamate-3 Aß (AßpE3), could provide efficacy and improve tolerability in Aß immunotherapy. Here, we describe a selective vaccine against AßpE3, which uses the diphtheria toxin mutant CRM197 as carrier protein for epitope presentation. CRM197 is currently used in licensed vaccines and has demonstrated excellent immunogenicity and safety in humans. In mice, our AßpE3:CRM197 vaccine triggered the production of specific anti-AßpE3 antibodies that did not cross-react with Aß1-42, non-cyclized AßE3, or N-terminally-truncated pyroglutamate-11 Aß (AßpE11). AßpE3:CRM197 antiserum strongly labeled AßpE3 in insoluble protein extracts and decorated cortical amyloid plaques in human AD brains. Anti-AßpE3 antibodies were almost exclusively of the IgG1 isotype, suggesting an anti-inflammatory Th2 response bias to the AßpE3:CRM197 vaccine. To the best of our knowledge, this study shows for the first time that CRM197 has potential as a safe and suitable vaccine carrier for active and selective immunization against specific protein sequence modifications or conformations, such as AßpE3.
ABSTRACT
OBJECTIVE: Traumatic brain injury (TBI) is a recognized risk factor for later development of neurodegenerative disease. However, the mechanisms contributing to neurodegeneration following TBI remain obscure. METHODS: In this study, we have utilized a novel mild TBI (mTBI) model to examine the chronic neurobehavioral and neuropathological outcomes following single and repetitive mTBI at time points from 6 to 18 months following injury. RESULTS: Our results reveal that at 6, 12, and 18 months after injury, animals exposed to a single mTBI have learning impairments when compared to their sham controls without exhibiting spatial memory retention deficits. In contrast, animals exposed to repetitive injury displayed persistent cognitive deficits, slower rate of learning, and progressive behavioral impairment over time. These deficits arise in parallel with a number of neuropathological abnormalities, including progressive neuroinflammation and continuing white matter degradation up to 12 months following repetitive injury. Neither single nor repetitive mTBI was associated with elevated brain levels of amyloid beta or abnormal tau phosphorylation at 6 or 12 months after injury. INTERPRETATION: Importantly, these data provide evidence that, although a single mTBI produces a clinical syndrome and pathology that remain static in the period following injury, repetitive injuries produce behavioral and pathological changes that continue to evolve many months after the initial injuries. As such, this model recapitulates many aspects described in human studies of TBI, providing a suitable platform on which to investigate the evolving pathologies following mild TBI and potential strategies for therapeutic intervention.
Subject(s)
Anxiety/etiology , Brain Injuries/complications , Brain Injuries/pathology , Cognition Disorders/etiology , Movement Disorders/etiology , Amyloid beta-Peptides/metabolism , Animals , Corpus Callosum/pathology , Disease Models, Animal , Gene Expression Regulation , Male , Maze Learning , Mice , Mice, Inbred C57BL , Nerve Fibers, Myelinated/pathology , Peptide Fragments/metabolism , Retention, Psychology/physiology , Rotarod Performance Test , Time Factors , tau Proteins/metabolismABSTRACT
The accumulation of Tau into aggregates is associated with key pathological events in frontotemporal lobe degeneration (FTD-Tau) and Alzheimer disease (AD). Recent data have shown that misfolded Tau can be internalized by cells in vitro (Frost, B., Jacks, R. L., and Diamond, M. I. (2009) J. Biol. Chem. 284, 12845-12852) and propagate pathology in vivo (Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., and Tolnay, M. (2009) Nat. Cell Biol. 11, 909-913; Lasagna-Reeves, C. A., Castillo-Carranza, D. L., Sengupta, U., Guerrero-Munoz, M. J., Kiritoshi, T., Neugebauer, V., Jackson, G. R., and Kayed, R. (2012) Sci. Rep. 2, 700). Here we show that recombinant Tau misfolds into low molecular weight (LMW) aggregates prior to assembly into fibrils, and both extracellular LMW Tau aggregates and short fibrils, but not monomers, long fibrils, nor long filaments purified from brain extract are taken up by neurons. Remarkably, misfolded Tau can be internalized at the somatodendritic compartment, or the axon terminals and it can be transported anterogradely, retrogradely, and can enhance tauopathy in vivo. The internalized Tau aggregates co-localize with dextran, a bulk-endocytosis marker, and with the endolysosomal compartments. Our findings demonstrate that exogenous Tau can be taken up by cells, uptake depends on both the conformation and size of the Tau aggregates and once inside cells, Tau can be transported. These data provide support for observations that tauopathy can spread trans-synaptically in vivo, via cell-to-cell transfer.
Subject(s)
Alzheimer Disease/metabolism , Endosomes/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Biological Transport , Biomarkers/metabolism , Brain Chemistry , Dextrans/metabolism , Endocytosis , Endosomes/pathology , Humans , Kinetics , Mice , Mice, Transgenic , Microscopy, Electron , Molecular Weight , Neurons/pathology , Primary Cell Culture , Protein Binding , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synaptic Vesicles/pathology , tau Proteins/geneticsABSTRACT
RATIONALE: Propofol is one of the first-line sedative-hypnotic agents for critically ill adults requiring mechanical ventilation. While propofol can elevate triglyceride levels, and the latter is a risk factor for pancreatitis, the association between propofol and acute pancreatitis is unclear. OBJECTIVES: To determine the clinical impact and potential associations between propofol infusion, hypertriglyceridemia and acute pancreatitis. METHODS: This is an observational multicenter study of adults (≥18 years old) admitted to an intensive care unit. requiring mechanical ventilation and receiving continuous propofol infusion for at least 24 hours. The primary outcomes were the frequency of hypertriglyceridemia and acute pancreatitis. Further analyses were done to determine the clinical impact of elevated triglyceride levels (i.e. sedation changes) and risk factors for pancreatitis development. MEASUREMENTS AND MAIN RESULTS: Of 11,828 patients included, 33.2% (N=3922) had triglyceride levels measured, of whom 21.7% (N=851) had hypertriglyceridemia at 4.5 (SD 6.8) days after propofol initiation. Of those still requiring sedation, 70.4% (N=576/818) received alternative sedatives following hypertriglyceridemia. Pancreatitis occurred in 1.2% (N=47/3922) and was more frequent in those with hypertriglyceridemia (3.2%, 27/851 versus 0.7%, 20/3071; P<0.001). Following adjustment for potential confounding variables, each 100 mg/dL increase in triglyceride levels was associated with an 11% increase in risk of pancreatitis. Propofol dose was not associated with pancreatitis development. CONCLUSIONS: Acute pancreatitis is uncommon in patients receiving propofol infusion, and occurs over a wide range of triglyceride levels, indicating a multifactorial pathophysiology. Hypertriglyceridemia frequently prompts the use of alternative sedatives. Further study is needed to determine how to best monitor and treat hypertriglyceridemia in critically ill patients receiving propofol infusion.
ABSTRACT
STUDY OBJECTIVE: Describe dosing of local anesthetic when both a periarticular injection (PAI) and peripheral nerve block (PNB) are utilized for knee arthroplasty analgesia, and compare the dosing of local to suggested maximum dosing, and look for evidence of local anesthetic systemic toxicity (LAST). DESIGN: A single center retrospective cohort study between May 2018 and November 2022. SETTING: A major academic hospital. PATIENTS: Patients who had both a PAI and PNB while undergoing primary, revision, total, partial, unilateral, or bilateral knee arthroplasty. INTERVENTIONS: None. MEASUREMENTS: Calculate the dose of local anesthetic given via PAI, PNB, and both routes combined as based on lean body weight and compare that to the suggested maximum dosing. Look for medications, clinical interventions, and critical event notes suggestive of a LAST event. MAIN RESULTS: There were 4527 knee arthroplasties where both a PAI and PNB were performed during the study period. When combining PAI and PNB doses, >75% of patients received more than the suggested maximum dose of 3 mg/kg lean body weight. The median local anesthetic dosing over the study period, 4.4 mg/kg (IQR 3.5,5.9), was 147% of the suggested maximum dose (IQR 117,197). There was no conclusive evidence of LAST among any of the patients in the study. CONCLUSIONS: Over the course of our study, we had 4527 knee arthroplasties with a median PAI and PNB local anesthetic dose that was 147% of the suggested maximum without any clear clinical evidence of a LAST event.
Subject(s)
Anesthetics, Local , Arthroplasty, Replacement, Knee , Nerve Block , Humans , Arthroplasty, Replacement, Knee/adverse effects , Retrospective Studies , Anesthetics, Local/administration & dosage , Anesthetics, Local/adverse effects , Female , Male , Aged , Nerve Block/methods , Nerve Block/adverse effects , Middle Aged , Injections, Intra-Articular , Pain, Postoperative/prevention & control , Pain, Postoperative/etiology , Pain, Postoperative/drug therapy , Dose-Response Relationship, DrugABSTRACT
Tisagenlecleucel is approved for the treatment of relapsed/refractory (r/r) B cell acute lymphoblastic leukemia (B-ALL) in patients up to age 25 years based on the results of a pivotal trial (ELIANA) in pediatric and young adult patients. However, that trial did not include patients age <3 years because of the challenges posed by leukapheresis of very young and low-weight patients. Data on leukapheresis material and manufacturing outcomes among patients age <3 years have been collected since the time of global regulatory approval. Here we report leukapheresis characteristics and manufacturing outcomes for tisagenlecleucel produced for patients age <3 years in US and non-US commercial settings. Qualified patients with r/r B-ALL were age <3 years at the time of request for commercial tisagenlecleucel, with manufacturing data starting after August 30, 2017 (date of first US Food and Drug Administration approval). Leukapheresis and manufacturing outcomes data were stratified by age and weight. CD3+ cell count and CD3+/total nucleated cell (TNC) percentages were obtained from the leukapheresis material; leukocyte subpopulations were obtained via quality control vials. Of the 146 tisagenlecleucel quality control batches analyzed for CD3+ cell count and CD3+/TNC%, 86 batches (84 patients) were from US sites and 60 batches were from non-US sites. The median patient age and weight were 1.2 years and 10.4 kg at US sites and 1.5 years and 10.5 kg at non-US sites. Globally, 137 of 146 batches (94%) were manufactured within specifications across 16 countries. Among tisagenlecleucel batches manufactured in the United States between 2017 and 2021, there was a trend toward increasing CD3+ counts, CD3+/TNC%, and manufactured dose of chimeric antigen receptor (CAR) T cells; there was no difference in median days of collection by patient age or weight. Globally, a trend toward 1 or more potential additional collection days was observed for patients weighing ≤10 kg. Leukapheresis and tisagenlecleucel manufacturing in pediatric patients with r/r B-ALL age <3 years, including infants (<1 year), and low weight are feasible. As global experience with leukapheresis and patient identification for CAR-T cell therapy increased over time, a corresponding improvement in tisagenlecleucel manufacturing success has been observed. Clinical outcome data for these patients are currently being explored.
Subject(s)
Leukapheresis , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child, Preschool , Humans , Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Antigen, T-Cell/therapeutic useABSTRACT
BACKGROUND: Expression of active c-Abl in adult mouse forebrain neurons in the AblPP/tTA mice resulted in severe neurodegeneration, particularly in the CA1 region of the hippocampus. Neuronal loss was preceded and accompanied by substantial microgliosis and astrocytosis. In contrast, expression of constitutively active Arg (Abl-related gene) in mouse forebrain neurons (ArgPP/tTA mice) caused no detectable neuronal loss or gliosis, although protein expression and kinase activity were at similar levels to those in the AblPP/tTA mice. METHODS: To begin to elucidate the mechanism of c-Abl-induced neuronal loss and gliosis, gene expression analysis of AblPP/tTA mouse forebrain prior to development of overt pathology was performed. Selected results from gene expression studies were validated with quantitative reverse transcription PCR , immunoblotting and bromodeoxyuridine (BrdU) labeling, and by immunocytochemistry. RESULTS: Two of the top pathways upregulated in AblPP/tTA mice with c-Abl expression for 2 weeks were cell cycle and interferon signaling. However, only the expression of interferon signaling pathway genes remained elevated at 4 weeks of c-Abl induction. BrdU incorporation studies confirm that, while the cell cycle pathway is upregulated in AblPP/tTA mice at 2 weeks of c-Abl induction, the anatomical localization of the pathway is not consistent with previous pathology seen in the AblPP/tTA mice. Increased expression and activation of STAT1, a known component of interferon signaling and interferon-induced neuronal excitotoxicity, is an early consequence of c-Abl activation in AblPP/tTA mice and occurs in the CA1 region of the hippocampus, the same region that goes on to develop severe neurodegenerative pathology and neuroinflammation. Interestingly, no upregulation of gene expression of interferons themselves was detected. CONCLUSIONS: Our data suggest that the interferon signaling pathway may play a role in the pathologic processes caused by c-Abl expression in neurons, and that the AblPP/tTA mouse may be an excellent model for studying sterile inflammation and the effects of interferon signaling in the brain.
Subject(s)
Cell Cycle/physiology , Interferons/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Bromodeoxyuridine/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Doxycycline/pharmacology , Hippocampus/cytology , Hippocampus/drug effects , Mice , Mice, Transgenic , Neurogenesis/genetics , Olfactory Pathways/metabolism , Oncogene Proteins v-abl/genetics , Prosencephalon/cytology , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Time Factors , Up-Regulation/drug effects , Up-Regulation/geneticsABSTRACT
Aggregates of hyperphosphorylated tau protein are a pathological hallmark of more than 20 distinct neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. While the exact mechanism of tau aggregation is unknown, the accumulation of aggregates correlates with disease progression. Here we report a genome-wide CRISPR screen to identify modulators of endogenous tau protein for the first time. Primary screens performed in SH-SY5Y cells, identified positive and negative regulators of tau protein levels. Hit validation of the top 43 candidate genes was performed using Ngn2-induced human cortical excitatory neurons. Using this approach, genes and pathways involved in modulation of endogenous tau levels were identified, including chromatin modifying enzymes, neddylation and ubiquitin pathway members, and components of the mTOR pathway. TSC1, a critical component of the mTOR pathway, was further validated in vivo, demonstrating the relevance of this screening strategy. These findings may have implications for treating neurodegenerative diseases in the future.
Subject(s)
Metabolic Networks and Pathways/genetics , Neurons/metabolism , tau Proteins/metabolism , Animals , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cell Line, Tumor , Gene Editing , Genes/genetics , Genes/physiology , Genetic Testing/methods , Genome-Wide Association Study , Humans , Mice , Neuroblastoma/metabolism , Rats , TOR Serine-Threonine Kinases/metabolismABSTRACT
A hallmark feature of Alzheimer's disease pathology is the presence of neurofibrillary tangles (NFTs), which are intracellular aggregates of conformationally abnormal and hyperphosphorylated tau. The presence of NFTs in the forebrain is associated with impairments of cognitive function, supporting a central role for tau in dementia. The significance of the accumulation of NFTs for neuronal and cognitive function is still obscure. It is possible that NFTs disrupt synaptic transmission and plasticity, leading to memory deficits and cognitive malfunction. To elucidate the relationship between the development of tau pathology and synaptic and cognitive functions, we performed behavioral tests and electrophysiological experiments in the htau mouse. Here we report age-dependent cognitive and physiological impairments in htau mice that preceded neurodegeneration. Twelve-month-old htau mice with moderate tau pathology, but not 4-month-old mice with early-stage tau pathology, presented cognitive deficits in an object recognition memory task in which the visual recognition memory of a novel object was disrupted. Moreover, only 12-month-old htau mice exhibit spatial memory deficits, as indicated by the impaired performance in the Morris water maze. In addition, we report that basal synaptic transmission and induction of long-term potentiation with high-frequency stimulation, but not theta burst stimulation, is perturbed in hippocampal CA1 region of old but not young htau mice. Our results suggest that tau pathology may underlie an age-dependent learning impairment through disruption of synaptic function.
Subject(s)
Aging , Cognition Disorders/etiology , Neurofibrillary Tangles/pathology , Synapses/pathology , Tauopathies/complications , Tauopathies/pathology , Age Factors , Analysis of Variance , Animals , Disease Models, Animal , Dual Specificity Phosphatase 2 , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/genetics , Exploratory Behavior/physiology , Hippocampus/cytology , In Vitro Techniques , Long-Term Potentiation/physiology , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropsychological Tests , Pyramidal Cells/physiopathology , Recognition, Psychology/physiology , Synapses/physiology , tau Proteins/deficiencyABSTRACT
Homer proteins are intracellular scaffolding proteins that, among glutamate receptors, selectively bind to group1 metabotropic glutamate receptors and regulate their trafficking and intracellular signaling. Homer proteins have been implicated in synaptic and behavioral plasticity, including drug-seeking behavior after cocaine treatment. Homer1 gene activation leads to transcription of a variant mRNA (Homer1a), which functions as an immediate early gene. Homer1a competes with the constitutive Homer proteins (Homer1b/c/d, Homer2a/b, Homer3) for binding to group1 metabotropic glutamate and IP3 receptors. Binding of Homer1a to these proteins disrupts their association with the intracellular signaling scaffold and modulates receptor function. In this study, using RT-PCR, activation of Homer1a mRNA transcription in response to acute and repeated administration of cocaine was characterized in prefrontal cortex, nucleus accumbens, and ventral tegmental area, three mesocorticolimbic nuclei of the rat brain. Moreover, the dopaminergic and glutamatergic regulation of Homer1 gene activation by cocaine was investigated. Acute cocaine rapidly and transiently activated transcription of Homer1a mRNA in all three nuclei. However, repeated administration of cocaine was not effective in inducing the Homer1a mRNA transcription after various withdrawal times ranging from 2 h to 3 weeks. The acute cocaine-mediated activation of Homer1 gene was regulated by D1 but not D2 dopamine receptors. The blockade of AMPA or NMDA glutamate receptors did not prevent cocaine-mediated activation of Homer1 gene in the three mesocorticolimbic nuclei. These data indicate that acute administration of cocaine transiently activates Homer1 gene producing the immediate early gene Homer1a mRNA in the three mesocorticolimbic nuclei of the rat brain. Activation of Homer1 gene may contribute to the cocaine-mediated synaptic and behavioral plasticity.
Subject(s)
Carrier Proteins/metabolism , Cocaine/pharmacology , Dopamine/physiology , Glutamic Acid/physiology , Nerve Net/physiology , Signal Transduction/drug effects , Transcription, Genetic/genetics , Animals , Carrier Proteins/genetics , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Genes, Immediate-Early/drug effects , Genes, Immediate-Early/physiology , Homer Scaffolding Proteins , Limbic System/drug effects , Limbic System/physiology , Male , Nerve Net/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Transcription, Genetic/drug effectsABSTRACT
Tau pathology associated with chronic traumatic encephalopathy has been documented in the brains of individuals with a history of repetitive mild traumatic brain injury (r-mTBI). At this stage, the pathobiological role of tau in r-mTBI has not been extensively explored in appropriate pre-clinical models. Here, we describe the acute and chronic behavioral and histopathological effects of single and repetitive mild TBI (five injuries given at 48 h intervals) in young adult (3 months old) hTau mice that express all six isoforms of hTau on a null murine tau background. Animals exposed to r-mTBI showed impaired visuospatial learning in the Barnes maze test that progressively worsened from two weeks to 12 months post-injury, which was also accompanied by significant deficits in visuospatial memory consolidation at 12 months post-injury. In contrast, only marginal changes were observed in visuospatial learning at six and 12 months after single mTBI. Histopathological analyses revealed that hTau mice developed axonal injury, thinning of the corpus callosum, microgliosis and astrogliosis in the white matter at acute and chronic time points after injury. Tau immunohistochemistry and enzyme-linked immunosorbent assay data suggest, however, only transient, injury-dependent increases in phosphorylated tau in the cerebral cortex beneath the impact site and in the CA1/CA3 subregion of the hippocampus after single or r-mTBI. This study implicates white matter degeneration as a prominent feature of survival from mTBI, while the role of tau pathology in the neuropathological sequelae of TBI remains elusive.
Subject(s)
Chronic Traumatic Encephalopathy/pathology , Nerve Degeneration/pathology , White Matter/pathology , tau Proteins/metabolism , Animals , Disease Models, Animal , Humans , Male , Maze Learning , Mice , Mice, TransgenicABSTRACT
Objective: Exposure to repetitive concussion, or mild traumatic brain injury (mTBI), has been linked with increased risk of long-term neurodegenerative changes, specifically chronic traumatic encephalopathy (CTE). To date, preclinical studies largely have focused on the immediate aftermath of mTBI, with no literature on the lifelong consequences of mTBI in these models. This study provides the first account of lifelong neurobehavioral and histological consequences of repetitive mTBI providing unique insight into the constellation of evolving and ongoing pathologies with late survival. Methods: Male C57BL/6J mice (aged 2-3 months) were exposed to either single or repetitive mild TBI or sham procedure. Thereafter, animals were monitored and assessed at 24 months post last injury for measures of motor coordination, learning deficits, cognitive function, and anxiety-like behavior prior to euthanasia and preparation of the brains for detailed neuropathological and protein biochemical studies. Results: At 24 months survival animals exposed to r-mTBI showed clear evidence of learning and working memory impairment with a lack of spatial memory and vestibule-motor vestibulomotor deficits compared to sham animals. Associated with these late behavioral deficits there was evidence of ongoing axonal degeneration and neuroinflammation in subcortical white matter tracts. Notably, these changes were also observed after a single mTBI, albeit to a lesser degree than repetitive mTBI. Interpretation: In this context, our current data demonstrate, for the first time, that rather than an acute, time limited event, mild TBI can precipitate a lifelong degenerative process. These data therefore suggest that successful treatment strategies should consider both the acute and chronic nature of mTBI.
ABSTRACT
Mutations in the microtubule-associated protein tau gene have been linked to neurofibrillary tangle (NFT) formation in several neurodegenerative diseases known as tauopathies; however, no tau mutations occur in Alzheimer's disease, although this disease is also characterized by NFT formation and cell death. Importantly, the mechanism of tau-mediated neuronal death remains elusive. Aged mice expressing nonmutant human tau in the absence of mouse tau (htau mice) developed NFTs and extensive cell death. The mechanism of neuron death was investigated in htau mice, and surprisingly, the presence of tau filaments did not correlate directly with death within individual cells, suggesting that cell death can occur independently of NFT formation. Our observations show that the mechanism of neurodegeneration involved reexpression of cell-cycle proteins and DNA synthesis, indicating that nonmutant tau pathology and neurodegeneration may be linked via abnormal, incomplete cell-cycle reentry.
Subject(s)
Cell Cycle , Cell Death , Nerve Tissue Proteins/biosynthesis , tau Proteins/biosynthesis , Aging/pathology , Animals , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Bromodeoxyuridine/pharmacokinetics , DNA Fragmentation , Humans , Mice , Mice, Transgenic , Nerve Degeneration/pathology , Nerve Tissue Proteins/genetics , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Neurons/ultrastructure , Protein Isoforms/biosynthesis , tau Proteins/geneticsABSTRACT
In the attempt to elucidate if the "peripheral sink hypothesis" could be a potential mechanism of action for tau removal in passive immunotherapy experiments, we have examined tau levels in serum of chronically injected JNPL3 and Tg4510 transgenic animals. Measurement of tau in serum of mice treated with tau antibodies is challenging because of the antibody interference in sandwich enzyme-linked immunosorbent assays. To address this issue, we have developed a heat-treatment protocol at acidic pH to remove interfering molecules from serum, with excellent recovery of tau. The present data show that pan-tau and conformational antibodies do increase tau in mouse sera. However, these concentrations in serum do not consistently correlate with reductions of tau pathology in brain, suggesting that large elevations of tau species measured in serum are not predictive of efficacy. Here, we describe a reliable method to detect tau in serum of transgenic animals that have undergone tau immunotherapy. Levels of tau in human serum are less than the sensitivity of current assays, although artifactual signals are common. The method may be useful in similarly treated humans, a situation in which false positive signals are likely.
Subject(s)
Antibodies/therapeutic use , Immunization, Passive/methods , Tauopathies/diagnosis , Tauopathies/therapy , tau Proteins/blood , tau Proteins/immunology , Animals , Biomarkers/blood , Disease Models, Animal , Humans , Hydrogen-Ion Concentration , Mice, Transgenic , Predictive Value of Tests , Tauopathies/immunology , tau Proteins/isolation & purificationABSTRACT
Recent work from our lab and few others have strongly suggested that immunotherapy could be an effective means of preventing the development of tau accumulation in JNPL3 transgenic mice, carrying the human P301L mutation. The aim of this study was to test the efficacy of a variety of specific tau monoclonal antibodies in JNPL3. Starting at 3 months of age, mice were treated for 4 months with weekly intraperitoneal injections of saline or purified tau monoclonal antibodies (10 mg/Kg) different in specificity for pathological tau: CP13 (pSer202), RZ3 (pThr231) and PG5 (pSer409). As expected, not all the antibodies tested showed efficacy at preventing the development of tau pathology at the described dose, with some of them even worsening the pathological scenario. Only by targeting the pSer202 epitope with CP13 was a conspicuous reduction of insoluble or soluble tau in cortex and hindbrain obtained. Here we report about the importance of screening in vivo multiple tau antibodies in order to select the antibodies to direct into future clinical studies.
Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Phospho-Specific/administration & dosage , Immunization, Passive/methods , Tauopathies/immunology , tau Proteins/genetics , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Phospho-Specific/therapeutic use , Disease Models, Animal , Female , Humans , Injections, Intraperitoneal , Mice , Mice, Transgenic , Phosphorylation/drug effects , Rhombencephalon/metabolism , Tauopathies/genetics , Tauopathies/therapy , tau Proteins/immunology , tau Proteins/metabolismABSTRACT
The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer's disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.
Subject(s)
Antibody Affinity , Antibody Specificity , Immunization, Passive/methods , Mutation , tau Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , CA1 Region, Hippocampal/metabolism , Female , Mice , Phosphorylation/immunology , Prosencephalon/metabolism , Tauopathies/immunology , Tauopathies/therapy , Time Factors , tau Proteins/geneticsABSTRACT
In Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, undergoes a conformational change, and becomes aggregated and insoluble. There are three methods commonly used to study the insoluble tau fraction, two that utilize detergents (Sarkosyl and RIPA) and another that does not (insoluble). However, these methods require large amounts of homogenate for a relatively low yield of the insoluble fraction, which can be problematic when dealing with small tissue samples. Furthermore, the most common way of analyzing this material is through densitometry of immunoblots, offering only semiquantitative measurements. We provide a comparison of the three methods commonly used (Sarksoyl, RIPA, and insoluble) through immunoblot and ELISA analyses. Finally, we tested a new method to determine aggregated tau levels, utilizing a monoantibody tau ELISA. The insoluble fractions of four different mouse models (P301 L, htau, wild type, and knockout) as well as human AD and control brains were examined. There were significant correlations between the three insoluble methods for both total tau and pS396/404 tau measured by immunoblot or ELISA analyses. Additionally, the results from the ELISA method correlated significantly with those from immunoblot analyses. Finally, the monoantibody assay on the lysate significantly correlated with the total tau ELISAs performed on the three insoluble preparations. Taken together, these results suggest that all three insoluble preparation methods offer similar results for measuring insoluble tau in either mouse or human brains. In addition the new monoantibody ELISA offers a simple quantitative method to measure the amount of aggregated tau in both human and mouse brains.
Subject(s)
Blotting, Western/methods , Enzyme-Linked Immunosorbent Assay/methods , Tauopathies/metabolism , tau Proteins/immunology , tau Proteins/metabolism , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal , Brain/metabolism , Cell Fractionation/methods , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Pathology, Clinical/methods , Phosphorylation/physiology , Solubility , Tauopathies/genetics , Tauopathies/pathologyABSTRACT
Transgenic mouse models have been an invaluable resource in elucidating the complex roles of ß-amyloid and tau in Alzheimer's disease. Although many laboratories rely on qualitative or semiquantitative techniques when investigating tau pathology, we have developed 4 Low-Tau, Sandwich enzyme-linked immunosorbent assays (ELISAs) that quantitatively assess different epitopes of tau relevant to Alzheimer's disease: total tau, pSer-202, pThr-231, and pSer-396/404. In this study, after comparing our assays with commercially available ELISAs, we demonstrate our assay's high specificity and quantitative capabilities using brain homogenates from tau transgenic mice, htau, JNPL3, and tau knockout. All 4 ELISAs show excellent specificity for mouse and human tau, with no reactivity to tau knockout animals. An age-dependent increase of serum tau in both tau transgenic models was also seen. Taken together, these assays are valuable methods to quantify tau and phospho-tau levels in transgenic animals, by examining tau levels in brain and measuring tau as a potential serum biomarker.
Subject(s)
Alzheimer Disease/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Humans , Mice , Mice, Transgenic , Phosphorylation/genetics , Sensitivity and Specificity , tau Proteins/blood , tau Proteins/deficiencyABSTRACT
The abundant axonal microtubule-associated protein tau regulates microtubule and actin dynamics, thereby contributing to normal neuronal function. We examined whether mice deficient in tau (Tau(-/-)) or with high levels of human tau differ from wild-type (WT) mice in their susceptibility to neuroaxonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. After sensitization with MOG35-55, there was no difference in clinical disease course between human tau and WT mice, but Tau mice had more severe clinical disease and significantly more axonal damage in spinal cord white matter than those in WT mice. Axonal damage in gray matter correlated with clinical severity in individual mice. By immunoblot analysis, the early microtubule-associated protein-1b was increased 2-fold in the spinal cords of Tau mice with chronic experimental autoimmune encephalomyelitis versus naive Tau mice. This difference was not detected in comparable WT animals, which suggests that there was compensation for the loss of tau in the deficient mice. In addition, levels of the growth arrest-specific protein 7b, a tau-binding protein that is stabilized when bound to tau, were higher in WT than those in Tau(-/-) spinal cord samples. These data indicate that loss of tau exacerbates experimental autoimmune encephalomyelitis and suggest that maintaining tau integrity might reduce the axonal damage that occurs in inflammatory neurodegenerative diseases such as multiple sclerosis.