Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Immunol ; 23(8): 1169-1182, 2022 08.
Article in English | MEDLINE | ID: mdl-35882934

ABSTRACT

Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.


Subject(s)
Fibroblasts , Lymph Nodes , Animals , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Homeostasis , Lectins, C-Type/metabolism , Mice
2.
Cell ; 162(6): 1257-70, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26343581

ABSTRACT

The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant Braf(V600E) mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in Braf(V600E) mouse melanoma cells, as well as in Nras(G12D) melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients.


Subject(s)
Neoplasms/immunology , Prostaglandin-Endoperoxide Synthases/metabolism , Tumor Escape , Adaptive Immunity , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, CD/immunology , Aspirin/administration & dosage , Cell Line, Tumor , Dendritic Cells/immunology , Humans , Immunity, Innate , Immunotherapy , Inflammation/drug therapy , Inflammation/immunology , Integrin alpha Chains/immunology , Interferons/metabolism , Melanoma/drug therapy , Melanoma/immunology , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Prostaglandins/immunology , Proto-Oncogene Proteins B-raf/metabolism
3.
Immunity ; 50(6): 1344-1346, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216457

ABSTRACT

In this issue of Immunity, Mondor et al. (2019) and Camara et al. (2019) show that lymphatic endothelial cells are essential components of the niche that forms and maintains the subcapsular sinusoidal macrophage network in homeostasis and throughout an immune challenge.


Subject(s)
Endothelial Cells , Macrophages , Homeostasis
4.
Cell ; 154(4): 843-58, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953115

ABSTRACT

Mononuclear phagocytes are classified as macrophages or dendritic cells (DCs) based on cell morphology, phenotype, or select functional properties. However, these attributes are not absolute and often overlap, leading to difficulties in cell-type identification. To circumvent this issue, we describe a mouse model to define DCs based on their ontogenetic descendence from a committed precursor. We show that precursors of mouse conventional DCs, but not other leukocytes, are marked by expression of DNGR-1. Genetic tracing of DNGR-1 expression history specifically marks cells traditionally ascribed to the DC lineage, and this restriction is maintained after inflammation. Notably, in some tissues, cells previously thought to be monocytes/macrophages are in fact descendants from DC precursors. These studies provide an in vivo model for fate mapping of DCs, distinguishing them from other leukocyte lineages, and thus help to unravel the functional complexity of the mononuclear phagocyte system.


Subject(s)
Cell Lineage , Dendritic Cells/cytology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Animals , Dendritic Cells/metabolism , Hematopoiesis , Inflammation/pathology , Kidney/cytology , Lectins, C-Type/genetics , Lymphoid Progenitor Cells/metabolism , Macrophages/cytology , Mice , Mice, Inbred C57BL , Phagocytes/cytology , Receptors, IgG/metabolism , Receptors, Immunologic/genetics
5.
Trends Immunol ; 42(9): 782-794, 2021 09.
Article in English | MEDLINE | ID: mdl-34362676

ABSTRACT

Fibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system. FRC-generated conduits contribute to fluid and immune cell control by funneling fluids containing antigens and inflammatory mediators through the SLOs. We review recent progress in FRC biology that has advanced our understanding of immune cell functions and interactions. We discuss the intricate relationships between the cellular FRC and the fibrillar conduit networks, which together form the basis for efficient communication between immune cells and the tissues they survey.


Subject(s)
Cell Communication , Fibroblasts , Stromal Cells , Extracellular Matrix , Lymph Nodes
6.
J Cell Sci ; 134(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34184727

ABSTRACT

In adaptive immunity, CLEC-2+ dendritic cells (DCs) contact fibroblastic reticular cells (FRCs) inhibiting podoplanin-dependent actomyosin contractility, permitting FRC spreading and lymph node expansion. The molecular mechanisms controlling lymph node remodelling are incompletely understood. We asked how podoplanin is regulated on FRCs in the early phase of lymph node expansion, and which other proteins are required for the FRC response to DCs. We find that podoplanin and its partner proteins CD44 and CD9 are differentially expressed by specific lymph node stromal populations in vivo, and their expression in FRCs is coregulated by CLEC-2 (encoded by CLEC1B). Both CD44 and CD9 suppress podoplanin-dependent contractility. We find that beyond contractility, podoplanin is required for FRC polarity and alignment. Independently of podoplanin, CD44 and CD9 affect FRC-FRC interactions. Furthermore, our data show that remodelling of the FRC cytoskeleton in response to DCs is a two-step process requiring podoplanin partner proteins CD44 and CD9. Firstly, CLEC-2 and podoplanin binding inhibits FRC contractility, and, secondly, FRCs form protrusions and spread, which requires both CD44 and CD9. Together, we show a multi-faceted FRC response to DCs, which requires CD44 and CD9 in addition to podoplanin.


Subject(s)
Dendritic Cells , Fibroblasts , Lymph Nodes , Actomyosin , Animals , Cytoskeleton , Hyaluronan Receptors , Membrane Glycoproteins , Mice , Mice, Inbred C57BL , Tetraspanin 29
7.
Nat Methods ; 17(3): 335-342, 2020 03.
Article in English | MEDLINE | ID: mdl-32066960

ABSTRACT

Despite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes. Integrating single-cell PTM analysis with thiol-reactive organoid barcoding in situ (TOBis) enables high-throughput comparison of signaling networks between organoid cultures. Cell-type-specific PTM analysis of colorectal cancer organoid cocultures reveals that shApc, KrasG12D and Trp53R172H cell-autonomously mimic signaling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type-specific signaling analysis of healthy and cancerous organoids.


Subject(s)
Biomimetics , Colorectal Neoplasms/pathology , Gene Expression Regulation , Intestine, Small/cytology , Organoids/metabolism , Signal Transduction , Animals , Cell Differentiation , Coculture Techniques/methods , Colorectal Neoplasms/metabolism , Cytophotometry/methods , Enterocytes/cytology , Enteroendocrine Cells/cytology , Female , Fibroblasts/cytology , Goblet Cells/cytology , Humans , Macrophages/cytology , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Paneth Cells/cytology , Single-Cell Analysis/methods , Sulfhydryl Compounds/chemistry , Tumor Suppressor Protein p53/metabolism
8.
Nat Immunol ; 12(11): 1096-104, 2011 Sep 18.
Article in English | MEDLINE | ID: mdl-21926986

ABSTRACT

Fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) are nonhematopoietic stromal cells of lymphoid organs. They influence the migration and homeostasis of naive T cells; however, their influence on activated T cells remains undescribed. Here we report that FRCs and LECs inhibited T cell proliferation through a tightly regulated mechanism dependent on nitric oxide synthase 2 (NOS2). Expression of NOS2 and production of nitric oxide paralleled the activation of T cells and required a tripartite synergism of interferon-γ, tumor necrosis factor and direct contact with activated T cells. Notably, in vivo expression of NOS2 by FRCs and LECs regulated the size of the activated T cell pool. Our study elucidates an as-yet-unrecognized role for the lymph node stromal niche in controlling T cell responses.


Subject(s)
Clonal Selection, Antigen-Mediated , Endothelium, Lymphatic/metabolism , Nitric Oxide Synthase Type II/metabolism , Stromal Cells/metabolism , T-Lymphocytes/metabolism , Animals , Cell Growth Processes/genetics , Cell Movement/genetics , Cells, Cultured , Endothelium, Lymphatic/immunology , Endothelium, Lymphatic/pathology , Intercellular Junctions/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymph Nodes/pathology , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Stromal Cells/immunology , Stromal Cells/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transgenes/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
9.
Immunity ; 37(2): 276-89, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22884313

ABSTRACT

To initiate adaptive immunity, dendritic cells (DCs) move from parenchymal tissues to lymphoid organs by migrating along stromal scaffolds that display the glycoprotein podoplanin (PDPN). PDPN is expressed by lymphatic endothelial and fibroblastic reticular cells and promotes blood-lymph separation during development by activating the C-type lectin receptor, CLEC-2, on platelets. Here, we describe a role for CLEC-2 in the morphodynamic behavior and motility of DCs. CLEC-2 deficiency in DCs impaired their entry into lymphatics and trafficking to and within lymph nodes, thereby reducing T cell priming. CLEC-2 engagement of PDPN was necessary for DCs to spread and migrate along stromal surfaces and sufficient to induce membrane protrusions. CLEC-2 activation triggered cell spreading via downregulation of RhoA activity and myosin light-chain phosphorylation and triggered F-actin-rich protrusions via Vav signaling and Rac1 activation. Thus, activation of CLEC-2 by PDPN rearranges the actin cytoskeleton in DCs to promote efficient motility along stromal surfaces.


Subject(s)
Cell Movement/physiology , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Actins/metabolism , Adaptive Immunity/physiology , Animals , Antigen-Presenting Cells/metabolism , Blood Platelets/metabolism , Cells, Cultured , Dendritic Cells/immunology , Embryo, Mammalian , Endothelial Cells/metabolism , Endothelium, Lymphatic/cytology , Endothelium, Lymphatic/metabolism , Female , Flow Cytometry , Green Fluorescent Proteins/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lymph Nodes/cytology , Lymph Nodes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Myosin Light Chains/metabolism , Platelet Activation , Pregnancy , Proto-Oncogene Proteins c-vav/metabolism , Signal Transduction/physiology , Skin/cytology , Skin/metabolism , Tissue Culture Techniques , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
10.
J Cell Sci ; 131(19)2018 10 02.
Article in English | MEDLINE | ID: mdl-30185523

ABSTRACT

Cell migration is central to evoking a potent immune response. Dendritic cell (DC) migration to lymph nodes is dependent on the interaction of C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b), expressed by DCs, with podoplanin, expressed by lymph node stromal cells, although the underlying molecular mechanisms remain elusive. Here, we show that CLEC-2-dependent DC migration is controlled by tetraspanin CD37, a membrane-organizing protein. We identified a specific interaction between CLEC-2 and CD37, and myeloid cells lacking CD37 (Cd37-/-) expressed reduced surface CLEC-2. CLEC-2-expressing Cd37-/- DCs showed impaired adhesion, migration velocity and displacement on lymph node stromal cells. Moreover, Cd37-/- DCs failed to form actin protrusions in a 3D collagen matrix upon podoplanin-induced CLEC-2 stimulation, phenocopying CLEC-2-deficient DCs. Microcontact printing experiments revealed that CD37 is required for CLEC-2 recruitment in the membrane to its ligand podoplanin. Finally, Cd37-/- DCs failed to inhibit actomyosin contractility in lymph node stromal cells, thus phenocopying CLEC-2-deficient DCs. This study demonstrates that tetraspanin CD37 controls CLEC-2 membrane organization and provides new molecular insights into the mechanisms underlying CLEC-2-dependent DC migration.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antigens, CD/metabolism , Antigens, Neoplasm/metabolism , Cell Movement , Dendritic Cells/cytology , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Tetraspanins/metabolism , Actomyosin/metabolism , Animals , Cell Adhesion , Cell Surface Extensions/metabolism , Endothelial Cells/metabolism , HEK293 Cells , Humans , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Protein Binding , RAW 264.7 Cells , Tetraspanins/deficiency
11.
Immunity ; 35(6): 986-96, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22177922

ABSTRACT

Ectopic lymphoid follicles are hallmarks of chronic autoimmune inflammatory diseases such as multiple sclerosis (MS), rheumatoid arthritis, Sjögren's syndrome, and myasthenia gravis. However, the effector cells and mechanisms that induce their development are unknown. Here we showed that in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, Th17 cells specifically induced ectopic lymphoid follicles in the central nervous system (CNS). Development of ectopic lymphoid follicles was partly dependent on the cytokine interleukin 17 (IL-17) and on the cell surface molecule Podoplanin (Pdp), which was expressed on Th17 cells, but not on other effector T cell subsets. Pdp was also crucial for the development of secondary lymphoid structures: Pdp-deficient mice lacked peripheral lymph nodes and had a defect in forming normal lymphoid follicles and germinal centers in spleen and lymph node remnants. Thus, Th17 cells are uniquely endowed to induce tissue inflammation, characterized by ectopic lymphoid follicles within the target organ.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Th17 Cells/immunology , Animals , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Th17 Cells/metabolism
12.
Med Microbiol Immunol ; 209(4): 515-529, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32451606

ABSTRACT

Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.


Subject(s)
Cell Movement/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Neoplasms/immunology , Animals , Antigen Presentation , Cell Communication/immunology , Chemokines/immunology , Chemokines/metabolism , Cytoskeleton/immunology , Cytoskeleton/metabolism , Humans , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice
13.
Nature ; 514(7523): 498-502, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25341788

ABSTRACT

After immunogenic challenge, infiltrating and dividing lymphocytes markedly increase lymph node cellularity, leading to organ expansion. Here we report that the physical elasticity of lymph nodes is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells. We show in mouse cells that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-associated protein kinase (ROCK). Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunized mice augments lymph node expansion. In contrast, lymph node expansion is significantly constrained in mice selectively lacking CLEC-2 expression in dendritic cells. Thus, the same dendritic cells that initiate immunity by presenting antigens to T lymphocytes also initiate remodelling of lymph nodes by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid lymph node expansion--driven by lymphocyte influx and proliferation--that is the critical hallmark of adaptive immunity.


Subject(s)
Dendritic Cells/physiology , Fibroblasts/cytology , Lymph Nodes/cytology , Stromal Cells/cytology , Actomyosin/metabolism , Animals , Cell Membrane/metabolism , Cytoskeleton/metabolism , Dendritic Cells/immunology , Female , Fibroblasts/physiology , Inflammation/immunology , Lectins, C-Type/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Stromal Cells/physiology , ras Proteins/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein , rhoC GTP-Binding Protein
14.
Immunol Rev ; 271(1): 221-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27088917

ABSTRACT

A critical hallmark of adaptive immune responses is the rapid and extensive expansion of lymph nodes. During this process, the complex internal structure of the organs is maintained revealing the existence of mechanisms able to balance lymph node integrity with structural flexibility. This article reviews the extensive architectural remodeling that occurs within lymph nodes during adaptive immune responses and how it is regulated by dendritic cells (DCs). In particular we focus on previously unappreciated functions of DCs in coordinating remodeling of lymph node vasculature, expansion of the fibroblastic reticular network and maintenance of lymphoid stromal phenotypes. Our increased understanding of these processes indicates that DCs need to be viewed not only as key antigen-presenting cells for lymphocytes but also as broad-acting immune sentinels that convey signals to lymphoid organ stroma and thereby facilitate immune response initiation at multiple levels.


Subject(s)
Dendritic Cells/physiology , Homeostasis , Lymph Nodes/physiology , Adaptive Immunity , Animals , Antigen Presentation , Fibroblasts/physiology , Stromal Cells/physiology
15.
J Immunol ; 194(1): 307-15, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25411201

ABSTRACT

Dendritic cells (DCs) are key regulators of innate and adaptive immunity. Our understanding of immune function has benefited greatly from mouse models allowing for selective ablation of DCs. Many such models rely on transgenic diphtheria toxin receptor (DTR) expression driven by DC-restricted promoters. This renders DCs sensitive to DT but is otherwise thought to have no effect on immune physiology. In this study, we report that, unexpectedly, mice in which DTR is expressed on conventional DCs display marked lymph node (LN) hypocellularity and reduced frequency of DCs in the same organs but not in spleen or nonlymphoid tissues. Intriguingly, in mixed bone marrow chimeras the phenotype conferred by DTR-expressing DCs is dominant over control bone marrow-derived cells, leading to small LNs and an overall paucity of DCs independently of the genetic ability to express DTR. The finding of alterations in LN composition and size independently of DT challenge suggests that caution must be exercised when interpreting results of experiments obtained with mouse models to inducibly deplete DCs. It further indicates that DTR, a member of the epidermal growth factor family, is biologically active in mice. Its use in cell ablation experiments needs to be considered in light of this activity.


Subject(s)
Bone Marrow Cells/cytology , Dendritic Cells/immunology , Heparin-binding EGF-like Growth Factor/immunology , Lymph Nodes/pathology , Animals , Bone Marrow Cells/immunology , CD11c Antigen/metabolism , Dendritic Cells/cytology , Diphtheria Toxin/immunology , Heparin-binding EGF-like Growth Factor/biosynthesis , Lectins, C-Type/genetics , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Receptors, Immunologic/genetics , Spleen/cytology , Spleen/immunology
16.
Biotechnol J ; 19(1): e2300359, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37986209

ABSTRACT

Physical networks are ubiquitous in nature, but many of them possess a complex organizational structure that is difficult to recapitulate in artificial systems. This is especially the case in biomedical and tissue engineering, where the microstructural details of 3D cell scaffolds are important. Studies of biological networks-such as fibroblastic reticular cell (FRC) networks-have revealed the crucial role of network topology in a range of biological functions. However, cell scaffolds are rarely analyzed, or designed, using graph theory. To understand how networks affect adhered cells, 3D culture platforms capturing the complex topological properties of biologically relevant networks would be needed. In this work, we took inspiration from the small-world organization (high clustering and low path length) of FRC networks to design cell scaffolds. An algorithmic toolset was created to generate the networks and process them to improve their 3D printability. We employed tools from graph theory to show that the networks were small-world (omega factor, ω = -0.10 ± 0.02; small-world propensity, SWP = 0.74 ± 0.01). 3D microprinting was employed to physicalize networks as scaffolds, which supported the survival of FRCs. This work, therefore, represents a bioinspired, graph theory-driven approach to control the networks of microscale cell niches.


Subject(s)
Lymph Nodes , Tissue Scaffolds
17.
Open Biol ; 13(5): 220377, 2023 05.
Article in English | MEDLINE | ID: mdl-37161290

ABSTRACT

Upon initial immune challenge, dendritic cells (DCs) migrate to lymph nodes and interact with fibroblastic reticular cells (FRCs) via C-type lectin-like receptor 2 (CLEC-2). CLEC-2 binds to the membrane glycoprotein podoplanin (PDPN) on FRCs, inhibiting actomyosin contractility through the FRC network and permitting lymph node expansion. The hyaluronic acid receptor CD44 is known to be required for FRCs to respond to DCs but the mechanism of action is not fully elucidated. Here, we use DNA-PAINT, a quantitative single molecule super-resolution technique, to visualize and quantify how PDPN clustering is regulated in the plasma membrane of FRCs. Our results indicate that CLEC-2 interaction leads to the formation of large PDPN clusters (i.e. more than 12 proteins per cluster) in a CD44-dependent manner. These results suggest that CD44 expression is required to stabilize large pools of PDPN at the membrane of FRCs upon CLEC-2 interaction, revealing the molecular mechanism through which CD44 facilitates cellular crosstalk between FRCs and DCs.


Subject(s)
Single Molecule Imaging , Transcription Factors , Actin Cytoskeleton , Cluster Analysis , Lectins, C-Type
18.
Front Immunol ; 13: 733800, 2022.
Article in English | MEDLINE | ID: mdl-35355992

ABSTRACT

The tumour microenvironment (TME) presents a major block to anti-tumour immune responses and to effective cancer immunotherapy. The inflammatory mediators such as cytokines, chemokines, growth factors and prostaglandins generated in the TME alter the phenotype and function of dendritic cells (DCs) that are critical for a successful adaptive immune response against the growing tumour. In this mini review we discuss how tumour cells and the surrounding stroma modulate DC maturation and trafficking to impact T cell function. Fibroblastic stroma and the associated extracellular matrix around tumours can also provide physical restrictions to infiltrating DCs and other leukocytes. We discuss interactions between the inflammatory TME and infiltrating immune cell function, exploring how the inflammatory TME affects generation of T cell-driven anti-tumour immunity. We discuss the open question of the relative importance of antigen-presentation site; locally within the TME versus tumour-draining lymph nodes. Addressing these questions will potentially increase immune surveillance and enhance anti-tumour immunity.


Subject(s)
Neoplasms , Tumor Microenvironment , Antigen Presentation , Dendritic Cells , Humans , T-Lymphocytes
19.
Dis Model Mech ; 15(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-35072206

ABSTRACT

Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.


Subject(s)
Adaptive Immunity , Lymphoid Tissue , Cell Communication , Homeostasis , Stromal Cells
20.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36519543

ABSTRACT

The lymph node (LN) is the primary site of alloimmunity activation and regulation during transplantation. Here, we investigated how fibroblastic reticular cells (FRCs) facilitate the tolerance induced by anti-CD40L in a murine model of heart transplantation. We found that both the absence of LNs and FRC depletion abrogated the effect of anti-CD40L in prolonging murine heart allograft survival. Depletion of FRCs impaired homing of T cells across the high endothelial venules (HEVs) and promoted formation of alloreactive T cells in the LNs in heart-transplanted mice treated with anti-CD40L. Single-cell RNA sequencing of the LNs showed that anti-CD40L promotes a Madcam1+ FRC subset. FRCs also promoted the formation of regulatory T cells (Tregs) in vitro. Nanoparticles (NPs) containing anti-CD40L were selectively delivered to the LNs by coating them with MECA-79, which binds to peripheral node addressin (PNAd) glycoproteins expressed exclusively by HEVs. Treatment with these MECA-79-anti-CD40L-NPs markedly delayed the onset of heart allograft rejection and increased the presence of Tregs. Finally, combined MECA-79-anti-CD40L-NPs and rapamycin treatment resulted in markedly longer allograft survival than soluble anti-CD40L and rapamycin. These data demonstrate that FRCs are critical to facilitating costimulatory blockade. LN-targeted nanodelivery of anti-CD40L could effectively promote heart allograft acceptance.


Subject(s)
CD40 Ligand , Graft Survival , Mice , Animals , Mice, Inbred BALB C , Mice, Inbred C57BL , Lymph Nodes , Sirolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL