Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 24(1): 362-369, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38157323

ABSTRACT

This work used a highly flexible, sustainable polyimide tape as a substrate to deposit ductile-natured carbonaceous Ni3N (C/Ni3N@polyimide) material for supercapacitor application. C/Ni3N was prepared using a co-sputtering technique, and this method also provided better adhesion of the electrode material over the substrate, which is helpful in improving bending performance. The ductile behavior of the sputter-grown electrode and the high flexibility of the polyimide tape provide ultimate flexibility to the C/Ni3N@polyimide-based supercapacitor. To achieve optimum electrochemical performance, a series of electrochemical tests were done in the presence of various electrolytes. Further, a flexible asymmetric supercapacitor (NC-FSC) (C/Ni3N//carbon@polyimide) was assembled by using C/Ni3N as a cathode and a carbon thin film as an anode, separated by a GF/C-glass microfiber soaked in optimized 1 M Li2SO4 aqueous electrolyte. The NC-FSC offers a capacitance of 324 mF cm-2 with a high areal energy density of 115.26 µWh cm-2 and a power density of 811 µW cm-2, with ideal bending performance.

2.
Article in English | MEDLINE | ID: mdl-35656926

ABSTRACT

Simultaneously achieving a transparent and high-energy density supercapacitor is a major challenge because of the trade-off between energy storage capacity and optical transparency of active electrode materials. Herein, we demonstrate a novel approach to construct an optically transparent asymmetric supercapacitor (Trans-ASC) by assembling positive (ZnO-SnO2) and negative (TiO2-SnO2) composite thin-film electrodes on a conductive indium-doped tin oxide substrate via reactive DC magnetron cosputtering. The optical transmittance for both composite thin films is found to be 68% (ZnO-SnO2) and 64% (TiO2-SnO2). Furthermore, electrochemical kinematics of the primed transparent electrodes are scrutinized in 0.5 M KOH electrolyte without affecting the transparency of active electrodes. The structural reliability of the electrodes aids the superb electrochemical performance to construct a Trans-ASC, TiO2-SnO2//ZnO-SnO2, which works at a voltage of +1.2 V and attains a higher areal capacitance of 44.6 mF cm-2 at 2 mA cm-2. The assembled Trans-ASC delivers a maximum areal energy density of 8.75 µW h cm-2 with an optimal areal power density of 570 µW cm-2. Additionally, the capacitance retention of 81.6% and transparency of both electrodes remain almost the same (up to 60% for ZnO-SnO2 and 62% for TiO2-SnO2) even after 10,000 charging-discharging cycles. These remarkable electrochemical properties and outstanding cycling stability of the designed Trans-ASC device make it a potential candidate for storing energy and for further use in transparent electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL