Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inhal Toxicol ; 28(12): 550-560, 2016 10.
Article in English | MEDLINE | ID: mdl-27618878

ABSTRACT

Particles can be delivered to the respiratory tract of animals using various techniques. Inhalation mimics environmental exposure but requires large amounts of aerosolized NPs over a prolonged dosing time, varies in deposited dose among individual animals, and results in nasopharyngeal and fur particle deposition. Although less physiological, intratracheal (IT) instillation allows quick and precise dosing. Insufflation delivers particles in their dry form as an aerosol. We compared the distribution of neutron-activated 141CeO2 nanoparticles (5 mg/kg) in rats after (1) IT instillation, (2) left intrabronchial instillation, (3) microspraying of nanoceria suspension and (4) insufflation of nanoceria dry powder. Blood, tracheobronchial lymph nodes, liver, gastrointestinal tract, feces and urine were collected at 5 min and 24 h post-dosing. Excised lungs from each rat were dried at room temperature while inflated at a constant 30 cm water pressure. Dried lungs were then sliced into 50 pieces. The radioactivity of each lung piece and other organs was measured. The evenness index (EI) of each lung piece was calculated [EI = (µCi/mgpiece)/(µCi/mglung)]. The degree of EI value departure from 1.0 is a measure of deposition heterogeneity. We showed that the pulmonary distribution of nanoceria differs among modes of administration. Dosing by IT or microspraying resulted in similar spatial distribution. Insufflation resulted in significant deposition in the trachea and in more heterogeneous lung distribution. Our left intrabronchial instillation technique yielded a concentrated deposition into the left lung. We conclude that animal dosing techniques and devices result in varying patterns of particle deposition that will impact biokinetic and toxicity studies.


Subject(s)
Cerium/administration & dosage , Cerium/pharmacokinetics , Lung/metabolism , Metal Nanoparticles , Administration, Inhalation , Animals , Male , Neutrons , Powders , Rats , Trachea
2.
AAPS PharmSciTech ; 16(6): 1299-306, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25776985

ABSTRACT

In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 µm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).


Subject(s)
Aerosols/chemistry , Oxytocin/chemistry , Powders/chemistry , Administration, Inhalation , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Desiccation/methods , Drug Compounding/methods , Drug Stability , Dry Powder Inhalers/methods , Excipients/chemistry , Hot Temperature , Nanoparticles/chemistry , Particle Size , Trehalose/chemistry , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL