ABSTRACT
Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant disorder, caused by loss-of-function variants in CREBBP or EP300. Affected individuals present with distinctive craniofacial features, broad thumbs and/or halluces, and intellectual disability. RSTS phenotype has been well characterized in individuals of European descent but not in other populations. In this study, individuals from diverse populations with RSTS were assessed by clinical examination and facial analysis technology. Clinical data of 38 individuals from 14 different countries were analyzed. The median age was 7 years (age range: 7 months to 47 years), and 63% were females. The most common phenotypic features in all population groups included broad thumbs and/or halluces in 97%, convex nasal ridge in 94%, and arched eyebrows in 92%. Face images of 87 individuals with RSTS (age range: 2 months to 47 years) were collected for evaluation using facial analysis technology. We compared images from 82 individuals with RSTS against 82 age- and sex-matched controls and obtained an area under the receiver operating characteristic curve (AUC) of 0.99 (p < .001), demonstrating excellent discrimination efficacy. The discrimination was, however, poor in the African group (AUC: 0.79; p = .145). Individuals with EP300 variants were more effectively discriminated (AUC: 0.95) compared with those with CREBBP variants (AUC: 0.93). This study shows that clinical examination combined with facial analysis technology may enable earlier and improved diagnosis of RSTS in diverse populations.
Subject(s)
E1A-Associated p300 Protein/genetics , Ethnicity/genetics , Face/abnormalities , Genetics, Population , Mutation , Rubinstein-Taybi Syndrome/epidemiology , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Humans , Infant , International Agencies , Male , Middle Aged , Prognosis , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/pathology , Young AdultABSTRACT
Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome.
Subject(s)
Abnormalities, Multiple/epidemiology , Face/abnormalities , Noonan Syndrome/epidemiology , Turner Syndrome/epidemiology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Asian People/genetics , Child , Child, Preschool , Chromosomes, Human, X/genetics , Face/pathology , Facial Recognition , Female , Hispanic or Latino/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Noonan Syndrome/physiopathology , Phenotype , Population Surveillance , Turner Syndrome/diagnosis , Turner Syndrome/genetics , Turner Syndrome/physiopathology , White People/genetics , Young AdultABSTRACT
BACKGROUND: Pesticide exposure during susceptible windows and at certain doses are linked to numerous birth defects. Early experimental evidence suggests an association between active ingredients in pesticides and holoprosencephaly (HPE), the most common malformation of the forebrain in humans (1 in 250 embryos). No human studies to date have examined the association. This study investigated pesticides during multiple windows of exposure and fetal risk for HPE. It is hypothesized that pre-conception and early pregnancy, the time of brain development in utero, are the most critical windows of exposure. METHODS: A questionnaire was developed for this retrospective case-control study to estimate household, occupational, and environmental pesticide exposures. Four windows of exposure were considered: preconception, early, mid and late pregnancy. Cases were identified through the National Human Genome Research Institute's ongoing clinical studies of HPE. Similarly, controls were identified as children with Williams-Beuren syndrome, a genetic syndrome also characterized by congenital malformations, but etiologically unrelated to HPE. We assessed for differences in odds of exposures to pesticides between cases and controls. RESULTS: Findings from 91 cases and 56 controls showed an increased risk for HPE with reports of maternal exposure during pregnancy to select pesticides including personal insect repellants (adjusted odds ratio (aOR) 2.89, confidence interval (CI): 0.96-9.50) and insecticides and acaricides for pets (aOR 3.84, CI:1.04-16.32). Exposure to household pest control products during the preconception period or during pregnancy was associated with increased risk for HPE (aOR 2.60, OR: 0.84-8.68). No associations were found for occupational exposures to pesticides during pregnancy (aOR: 1.15, CI: 0.11-11.42), although exposure rates were low. Higher likelihood for HPE was also observed with residency next to an agricultural field (aOR 3.24, CI: 0.94-12.31). CONCLUSIONS: Observational findings are consistent with experimental evidence and suggest that exposure to personal, household, and agricultural pesticides during pregnancy may increase risk for HPE. Further investigations of gene by environment interactions are warranted.
Subject(s)
Environmental Exposure/adverse effects , Holoprosencephaly/epidemiology , Pesticides/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Adolescent , Adult , Case-Control Studies , Female , Holoprosencephaly/chemically induced , Humans , Male , Maternal Exposure/adverse effects , Occupational Exposure/adverse effects , Pregnancy/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Retrospective Studies , Risk Factors , United States/epidemiology , Young AdultABSTRACT
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome characterized by mostly benign tumors of the brain, skin, heart, kidney, and eye. Aberrations in the genes TSC1 and TSC2 which encode hamartin and tuberin, respectively, cause TSC. Because disease manifestations develop over time, early diagnosis and intervention are imperative for patients. TSC is not well described in patients from sub-Saharan Africa or of black African ancestry. Here, we report on a 4-year-old Nigerian boy with skin lesions and cardiac anomalies associated with TSC. Furthermore, we note that in areas with limited resources for genetic diagnoses, the common skin manifestations found in TSC may be especially useful clinical markers.
Subject(s)
Angiofibroma/genetics , Mutation , Rhabdomyoma/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/genetics , Angiofibroma/diagnosis , Angiofibroma/pathology , Child, Preschool , Gene Expression , Humans , Male , Myocardium/metabolism , Myocardium/pathology , Nigeria , Rhabdomyoma/diagnosis , Rhabdomyoma/pathology , Skin/metabolism , Skin/pathology , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/pathology , Exome SequencingABSTRACT
PurposeWith improved medical care, some individuals with holoprosencephaly (HPE) are surviving into adulthood. We investigated the clinical manifestations of adolescents and adults with HPE and explored the underlying molecular causes.MethodsParticipants included 20 subjects 15 years of age and older. Clinical assessments included dysmorphology exams, cognitive testing, swallowing studies, ophthalmic examination, and brain magnetic resonance imaging. Genetic testing included chromosomal microarray, Sanger sequencing for SHH, ZIC2, SIX3, and TGIF, and whole-exome sequencing (WES) of 10 trios.ResultsSemilobar HPE was the most common subtype of HPE, seen in 50% of the participants. Neurodevelopmental disabilities were found to correlate with HPE subtype. Factors associated with long-term survival included HPE subtype not alobar, female gender, and nontypical facial features. Four participants had de novo pathogenic variants in ZIC2. WES analysis of 11 participants did not reveal plausible candidate genes, suggesting complex inheritance in these cases. Indeed, in two probands there was a history of uncontrolled maternal type 1 diabetes.ConclusionIndividuals with various HPE subtypes can survive into adulthood and the neurodevelopmental outcomes are variable. Based on the facial characteristics and molecular evaluations, we suggest that classic genetic causes of HPE may play a smaller role in this cohort.
Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Holoprosencephaly/diagnosis , Holoprosencephaly/genetics , Adolescent , Adult , Facies , Female , Genetic Testing , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Phenotype , Registries , Young AdultABSTRACT
Williams-Beuren syndrome (WBS) is a common microdeletion syndrome characterized by a 1.5Mb deletion in 7q11.23. The phenotype of WBS has been well described in populations of European descent with not as much attention given to other ethnicities. In this study, individuals with WBS from diverse populations were assessed clinically and by facial analysis technology. Clinical data and images from 137 individuals with WBS were found in 19 countries with an average age of 11 years and female gender of 45%. The most common clinical phenotype elements were periorbital fullness and intellectual disability which were present in greater than 90% of our cohort. Additionally, 75% or greater of all individuals with WBS had malar flattening, long philtrum, wide mouth, and small jaw. Using facial analysis technology, we compared 286 Asian, African, Caucasian, and Latin American individuals with WBS with 286 gender and age matched controls and found that the accuracy to discriminate between WBS and controls was 0.90 when the entire cohort was evaluated concurrently. The test accuracy of the facial recognition technology increased significantly when the cohort was analyzed by specific ethnic population (P-value < 0.001 for all comparisons), with accuracies for Caucasian, African, Asian, and Latin American groups of 0.92, 0.96, 0.92, and 0.93, respectively. In summary, we present consistent clinical findings from global populations with WBS and demonstrate how facial analysis technology can support clinicians in making accurate WBS diagnoses.
Subject(s)
Biological Variation, Population , Genetic Heterogeneity , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Anthropometry/methods , Facies , Humans , Phenotype , Population Groups , Reproducibility of Results , Sensitivity and Specificity , Williams Syndrome/epidemiologyABSTRACT
BACKGROUND: Congenital heart disease (CHD) is a common birth defect affecting approximately 1% of newborns. Great progress has been made in elucidating the genetic aetiology of CHD with advances in genomic technology, which we leveraged in recovering a new pathway affecting heart development in humans previously known to affect heart development in an animal model. METHODS: Four hundred and sixteen individuals from Thailand and the USA diagnosed with CHD and/or congenital diaphragmatic hernia were evaluated with chromosomal microarray and whole exome sequencing. The DECIPHER Consortium and medical literature were searched for additional patients. Murine hearts from ENU-induced mouse mutants and transgenic mice were evaluated using both episcopic confocal histopathology and troponin I stained sections. RESULTS: Loss of function ROBO1 variants were identified in three families; each proband had a ventricular septal defect, and one proband had tetralogy of Fallot. Additionally, a microdeletion in an individual with CHD was found in the medical literature. Mouse models showed perturbation of the Slit-Robo signalling pathway, causing septation and outflow tract defects and craniofacial anomalies. Two probands had variable facial features consistent with the mouse model. CONCLUSION: Our findings identify Slit-Robo as a significant pathway in human heart development and CHD.
Subject(s)
Heart Septal Defects/diagnosis , Heart Septal Defects/genetics , Loss of Function Mutation , Nerve Tissue Proteins/genetics , Phenotype , Receptors, Immunologic/genetics , Tetralogy of Fallot/diagnosis , Tetralogy of Fallot/genetics , Animals , Child , DNA Copy Number Variations , Disease Models, Animal , Female , Genetic Association Studies , Humans , Infant , Male , Mice , Polymorphism, Single Nucleotide , Roundabout ProteinsABSTRACT
Down syndrome is the most common cause of cognitive impairment and presents clinically with universally recognizable signs and symptoms. In this study, we focus on exam findings and digital facial analysis technology in individuals with Down syndrome in diverse populations. Photos and clinical information were collected on 65 individuals from 13 countries, 56.9% were male and the average age was 6.6 years (range 1 month to 26 years; SD = 6.6 years). Subjective findings showed that clinical features were different across ethnicities (Africans, Asians, and Latin Americans), including brachycephaly, ear anomalies, clinodactyly, sandal gap, and abundant neck skin, which were all significantly less frequent in Africans (P < 0.001, P < 0.001, P < 0.001, P < 0.05, and P < 0.05, respectively). Evaluation using a digital facial analysis technology of a larger diverse cohort of newborns to adults (n = 129 cases; n = 132 controls) was able to diagnose Down syndrome with a sensitivity of 0.961, specificity of 0.924, and accuracy of 0.943. Only the angles at medial canthus and ala of the nose were common significant findings amongst different ethnicities (Caucasians, Africans, and Asians) when compared to ethnically matched controls. The Asian group had the least number of significant digital facial biometrics at 4, compared to Caucasians at 8 and Africans at 7. In conclusion, this study displays the wide variety of findings across different geographic populations in Down syndrome and demonstrates the accuracy and promise of digital facial analysis technology in the diagnosis of Down syndrome internationally. Ā© 2016 Wiley Periodicals, Inc.
Subject(s)
Down Syndrome/diagnosis , Down Syndrome/epidemiology , Facies , Genetic Association Studies , Phenotype , Population Groups/statistics & numerical data , Population Surveillance , Adolescent , Adult , Biomarkers , Case-Control Studies , Child , Child, Preschool , Down Syndrome/genetics , Female , Humans , Infant , Infant, Newborn , Male , Population Groups/genetics , Sensitivity and Specificity , Young AdultABSTRACT
Noonan syndrome (NS) is a common genetic syndrome associated with gain of function variants in genes in the Ras/MAPK pathway. The phenotype of NS has been well characterized in populations of European descent with less attention given to other groups. In this study, individuals from diverse populations with NS were evaluated clinically and by facial analysis technology. Clinical data and images from 125 individuals with NS were obtained from 20 countries with an average age of 8 years and female composition of 46%. Individuals were grouped into categories of African descent (African), Asian, Latin American, and additional/other. Across these different population groups, NS was phenotypically similar with only 2 of 21 clinical elements showing a statistically significant difference. The most common clinical characteristics found in all population groups included widely spaced eyes and low-set ears in 80% or greater of participants, short stature in more than 70%, and pulmonary stenosis in roughly half of study individuals. Using facial analysis technology, we compared 161 Caucasian, African, Asian, and Latin American individuals with NS with 161 gender and age matched controls and found that sensitivity was equal to or greater than 94% for all groups, and specificity was equal to or greater than 90%. In summary, we present consistent clinical findings from global populations with NS and additionally demonstrate how facial analysis technology can support clinicians in making accurate NS diagnoses. This work will assist in earlier detection and in increasing recognition of NS throughout the world.
Subject(s)
Face/physiopathology , Genetics, Population , Noonan Syndrome/genetics , Asian People , Black People/genetics , Child , Female , Humans , Male , Mitogen-Activated Protein Kinase Kinases/genetics , Noonan Syndrome/physiopathology , Signal Transduction , White People/genetics , ras Proteins/geneticsABSTRACT
22q11.2 deletion syndrome (22q11.2 DS) is the most common microdeletion syndrome and is underdiagnosed in diverse populations. This syndrome has a variable phenotype and affects multiple systems, making early recognition imperative. In this study, individuals from diverse populations with 22q11.2 DS were evaluated clinically and by facial analysis technology. Clinical information from 106 individuals and images from 101 were collected from individuals with 22q11.2 DS from 11 countries; average age was 11.7 and 47% were male. Individuals were grouped into categories of African descent (African), Asian, and Latin American. We found that the phenotype of 22q11.2 DS varied across population groups. Only two findings, congenital heart disease and learning problems, were found in greater than 50% of participants. When comparing the clinical features of 22q11.2 DS in each population, the proportion of individuals within each clinical category was statistically different except for learning problems and ear anomalies (P < 0.05). However, when Africans were removed from analysis, six additional clinical features were found to be independent of ethnicity (P ≥ 0.05). Using facial analysis technology, we compared 156 Caucasians, Africans, Asians, and Latin American individuals with 22q11.2 DS with 156 age and gender matched controls and found that sensitivity and specificity were greater than 96% for all populations. In summary, we present the varied findings from global populations with 22q11.2 DS and demonstrate how facial analysis technology can assist clinicians in making accurate 22q11.2 DS diagnoses. This work will assist in earlier detection and in increasing recognition of 22q11.2 DS throughout the world.
Subject(s)
Biometric Identification/methods , DiGeorge Syndrome/diagnosis , Heart Defects, Congenital/diagnosis , Image Interpretation, Computer-Assisted/methods , Learning Disabilities/diagnosis , Adolescent , Adult , Asian People , Black People , Child , Child, Preschool , Chromosomes, Human, Pair 22/chemistry , DiGeorge Syndrome/ethnology , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Facies , Female , Heart Defects, Congenital/ethnology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Hispanic or Latino , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Learning Disabilities/ethnology , Learning Disabilities/genetics , Learning Disabilities/physiopathology , Male , Phenotype , White PeopleABSTRACT
Muenke syndrome is an autosomal dominant disorder characterized by coronal suture craniosynostosis, hearing loss, developmental delay, carpal, and calcaneal fusions, and behavioral differences. Reduced penetrance and variable expressivity contribute to the wide spectrum of clinical findings. Muenke syndrome constitutes the most common syndromic form of craniosynostosis, with an incidence of 1 in 30,000 births and is defined by the presence of the p.Pro250Arg mutation in FGFR3. Participants were recruited from international craniofacial surgery and genetic clinics. Affected individuals, parents, and their siblings, if available, were enrolled in the study if they had a p.Pro250Arg mutation in FGFR3. One hundred and six patients from 71 families participated in this study. In 51 informative probands, 33 cases (64.7%) were inherited. Eighty-five percent of the participants had craniosynostosis (16 of 103 did not have craniosynostosis), with 47.5% having bilateral and 28.2% with unilateral synostosis. Females and males were similarly affected with bicoronal craniosynostosis, 50% versus 44.4% (P = 0.84), respectively. Clefting was rare (1.1%). Hearing loss was identified in 70.8%, developmental delay in 66.3%, intellectual disability in 35.6%, attention deficit/hyperactivity disorder in 23.7%, and seizures in 20.2%. In patients with complete skeletal surveys (upper and lower extremity x-rays), 75% of individuals were found to have at least a single abnormal radiographical finding in addition to skull findings. This is the largest study of the natural history of Muenke syndrome, adding valuable clinical information to the care of these individuals including behavioral and cognitive impairment data, vision changes, and hearing loss.
Subject(s)
Craniosynostoses/diagnosis , Craniosynostoses/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Facies , Female , Four-Dimensional Computed Tomography , Genetic Association Studies , Humans , Infant , Male , Middle Aged , Mutation , Pedigree , Phenotype , Receptor, Fibroblast Growth Factor, Type 3/genetics , Young AdultABSTRACT
OBJECTIVE: To investigate executive function and adaptive behavior in individuals with Muenke syndrome using validated instruments with a normative population and unaffected siblings as controls. STUDY DESIGN: Participants in this cross-sectional study included individuals with Muenke syndrome (P250R mutation in FGFR3) and their mutation-negative siblings. Participants completed validated assessments of executive functioning (Behavior Rating Inventory of Executive Function [BRIEF]) and adaptive behavior skills (Adaptive Behavior Assessment System, Second Edition [ABAS-II]). RESULTS: Forty-four with a positive FGFR3 mutation, median age 9 years, range 7 months to 52 years were enrolled. In addition, 10 unaffected siblings served as controls (5 males, 5 females; median age, 13 years; range, 3-18 years). For the General Executive Composite scale of the BRIEF, 32.1% of the cohort had scores greater than +1.5 SD, signifying potential clinical significance. For the General Adaptive Composite of the ABAS-II, 28.2% of affected individuals scored in the 3rd-8th percentile of the normative population, and 56.4% were below the average category (<25th percentile). Multiple regression analysis did not identify craniosynostosis as a predictor of BRIEF (P = .70) or ABAS-II scores (P = .70). In the sibling pair analysis, affected siblings performed significantly poorer on the BRIEF General Executive Composite and the ABAS-II General Adaptive Composite. CONCLUSION: Individuals with Muenke syndrome are at an increased risk for developing adaptive and executive function behavioral changes compared with a normative population and unaffected siblings.
Subject(s)
Adaptation, Psychological , Craniosynostoses/psychology , Executive Function , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Craniosynostoses/complications , Craniosynostoses/surgery , Cross-Sectional Studies , Female , Humans , Infant , Male , Middle Aged , Risk Factors , Siblings , Young AdultABSTRACT
Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis.
Subject(s)
Craniosynostoses/complications , Craniosynostoses/genetics , Mutation/genetics , Noonan Syndrome/complications , Noonan Syndrome/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Exome/genetics , Facies , Female , Humans , Imaging, Three-Dimensional , Infant, Newborn , Phenotype , Sequence Analysis, DNA , Skull/diagnostic imaging , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: Holoprosencephaly is the most common malformation of the forebrain (1 in 250 embryos) with severe consequences for fetal and child development. This study evaluates nongenetic factors associated with holoprosencephaly risk, severity, and gene-environment interactions. METHODS: For this retrospective case control study, we developed an online questionnaire focusing on exposures to common and rare toxins/toxicants before and during pregnancy, nutritional factors, maternal health history, and demographic factors. Patients with holoprosencephaly were primarily ascertained from our ongoing genetic and clinical studies of holoprosencephaly. Controls included children with Williams-Beuren syndrome (WBS) ascertained through online advertisements in a WBD support group and fliers. RESULTS: Difference in odds of exposures between cases and controls as well as within cases with varying holoprosencephaly severity were studied. Cases included children born with holoprosencephaly (n = 92) and the control group consisted of children with WBS (n = 56). Pregnancy associated risk associated with holoprosencephaly included maternal pregestational diabetes (9.2% of cases and 0 controls, p = .02), higher alcohol consumption (adjusted odds ratio [aOR], 1.73; 95% CI, 0.88-15.71), and exposure to consumer products such as aerosols or sprays including hair sprays (aOR, 2.46; 95% CI, 0.89-7.19). Significant gene-environment interactions were identified including for consumption of cheese (p < .05) and espresso drinks (p = .03). CONCLUSION: The study identifies modifiable risk factors and gene-environment interactions that should be considered in future prevention of holoprosencephaly. Studies with larger HPE cohorts will be needed to confirm these findings.
Subject(s)
Holoprosencephaly , Case-Control Studies , Child , Female , Gene-Environment Interaction , Holoprosencephaly/etiology , Holoprosencephaly/genetics , Humans , Pregnancy , Retrospective Studies , Risk FactorsABSTRACT
BACKGROUND: Congenital heart disease (CHD) is the most common birth defect and affects roughly 1% of the global population. There have been many large CHD sequencing projects in developing countries but none in sub-Saharan Africa. In this exome sequencing study, we recruited families from Lagos, Nigeria, affected by structural heart disease. METHODS: Ninety-eight participants with CHD and an average age of 3.6 years were recruited from Lagos, Nigeria. Exome sequencing was performed on probands and parents when available. For genes of high interest, we conducted functional studies in Drosophila using a cardiac-specific RNA interference-based gene silencing system. RESULTS: The 3 most common CHDs were tetralogy of Fallot (20%), isolated ventricular septal defect (14%), and transposition of the great arteries (8%). Ten percent of the cohort had pathogenic or likely pathogenic variants in genes known to cause CHD. In 64 complete trios, we found 34 de novo variants that were not present in the African population in the Genome Aggregation Database (v3). Nineteen loss of function variants were identified using the genome-wide distribution of selection effects for heterozygous protein-truncating variants (shet). Nine genes caused a significant mortality when silenced in the Drosophila heart, including 4 novel disease genes not previously associated with CHD (UBB, EIF4G3, SREBF1, and METTL23). CONCLUSIONS: This study identifies novel candidate genes and variants for CHD and facilitates comparisons with previous CHD sequencing studies in predominantly European cohorts. The study represents an important first step in genomic studies of CHD in understudied populations. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01952171.
Subject(s)
Heart Defects, Congenital/diagnosis , Animals , Child, Preschool , Drosophila , Eukaryotic Initiation Factor-4G/antagonists & inhibitors , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Female , Heart Defects, Congenital/genetics , Heterozygote , Humans , Infant , Loss of Function Mutation , Male , Myocardium/metabolism , Nigeria , RNA Interference , Ubiquitin/antagonists & inhibitors , Ubiquitin/genetics , Ubiquitin/metabolism , Exome SequencingABSTRACT
PURPOSE: Turner syndrome (TS) is the most common sex chromosome disorder in women and is associated with a higher than expected death rate secondary to cerebrovascular disease, including stroke. This study evaluates the cerebral vascular anatomy of individuals with TS. METHODS: Twenty-one women with TS had brain magnetic resonance angiography (MRA). These MRAs were evaluated in a blinded manner with a control group of 25 men and 25 women who had MRA imaging for multiple indications including migraine headaches, psychiatric disorders, and seizures. RESULTS: Twenty-nine percent of women with TS were missing an A1 segment of the anterior cerebral artery (ACA) compared to 0% in the control group (p < .001). There were no other significant differences in the circle of Willis (COW) in women with TS compared with the control group. A complete COW was found in 3 of 21 (14%) of women with TS and 12 of 47 (26%) controls (p = .36). CONCLUSION: Women with TS have a significantly different intracranial vascular anatomy, specifically the absence of the A1 segment of the ACA when compared to male and female controls. More research in brain imaging in women with TS and stroke and other cerebrovascular diseases is needed to determine the clinical significance of this anomaly.