Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Renal Physiol ; 324(4): F387-F403, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36794752

ABSTRACT

Chronic kidney disease (CKD) of uncertain etiology (CKDu) is a global health concern affecting tropical farming communities. CKDu is not associated with typical risk factors (e.g., diabetes) and strongly correlates with environmental drivers. To gain potential insights into disease etiology and diagnosis, here we report the first urinary proteome comparing patients with CKDu and non-CKDu controls from Sri Lanka. We found 944 differentially abundant proteins. In silico analyses identified 636 proteins of likely kidney and urogenital origin. As expected, renal tubular injury in patients with CKDu was evinced by increases in albumin, cystatin C, and ß2-microglobulin. However, several proteins typically elevated under CKD, including osteopontin and α-N-acetylglucosaminidase, were decreased in patients with CKDu. Furthermore, urinary excretion of aquaporins found higher in CKD was lower in CKDu. Comparisons with previous CKD urinary proteome datasets revealed a unique proteome for CKDu. Notably, the CKDu urinary proteome was relatively similar to that of patients with mitochondrial diseases. Furthermore, we report a decrease in endocytic receptor proteins responsible for protein reabsorption (megalin and cubilin) that correlated with an increase in abundance of 15 of their cognate ligands. Functional pathway analyses identified kidney-specific differentially abundant proteins in patients with CKDu denoted significant changes in the complement cascade and coagulation systems, cell death, lysosomal function, and metabolic pathways. Overall, our findings provide potential early detection markers to diagnose and distinguish CKDu and warrant further analyses on the role of lysosomal, mitochondrial, and protein reabsorption processes and their link to the complement system and lipid metabolism in CKDu onset and progression.NEW & NOTEWORTHY CKDu is a global health concern debilitating a number of tropical rural farming communities. In the absence of typical risk factors like diabetes and hypertension and the lack of molecular markers, it is crucial to identify potential early disease markers. Here, we detail the first urinary proteome profile to distinguish CKDu from CKD. Our data and in silico pathway analyses infer the roles of mitochondrial, lysosomal, and protein reabsorption processes in disease onset and progression.


Subject(s)
Lysosomes , Mitochondria , Proteome , Urine , Urine/chemistry , Proteome/analysis , Mitochondria/metabolism , Lysosomes/metabolism , Proteins/metabolism , Renal Insufficiency, Chronic , Computer Simulation , Cell Death , Metabolic Networks and Pathways , Lipid Metabolism , Complement System Proteins
2.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496484

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. Further, co-infections with HIV and Mtb have severe effects in the host, with people infected with HIV being fifteen to twenty-one times more likely to develop active TB. The use of an appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans would be a useful tool for conducting basic and translational research in HIV/Mtb infections. The present study was focused on developing a humanized mouse model for investigations on HIV-Mtb co-infection. Using NSG-SGM3 mice that can engraft human stem cells, our studies showed that they were able to engraft human CD34+ stem cells which then differentiate into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced the development of granulomatous lesions in the lungs, detected by CT scan and histopathology. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Our results suggest that the humanized NSG-SGM3 mice are able to recapitulate the effects of HIV and Mtb infections and co-infection in the human host at pathological, immunological and metabolism levels, providing a dependable small animal model for studying HIV/Mtb co-infection.

3.
Front Immunol ; 15: 1395018, 2024.
Article in English | MEDLINE | ID: mdl-38799434

ABSTRACT

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.


Subject(s)
Coinfection , Disease Models, Animal , HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Animals , Coinfection/immunology , Coinfection/microbiology , HIV Infections/immunology , HIV Infections/complications , Humans , Mice , Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Viral Load , HIV-1/immunology , Lung/immunology , Lung/pathology , Lung/virology , Hematopoietic Stem Cells/immunology , Mice, SCID
4.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014329

ABSTRACT

Background: In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims: This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods: We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results: Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions: This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.

5.
Nanotheranostics ; 5(3): 309-320, 2021.
Article in English | MEDLINE | ID: mdl-33732602

ABSTRACT

Surface functionalization of nanoparticles (NPs) may alter their biological interactions such as uptake by alveolar macrophages (AMs). Pulmonary delivery of gold NPs (Au NPs) has theranostic potential due to their optoelectronic properties, minimal alveoli to blood translocation, and possibility of specific cell targeting. Here, we examined whether coating Au NPs with transferrin alters their protein corona, uptake by macrophages, and pulmonary translocation. Methods: Rats were intratracheally instilled with transferrin-coated Au NPs (Tf-Au NPs) or polyethylene glycol-coated Au NPs (PEG-Au NPs). AMs were collected and processed for quantitation of Au cell uptake using ICP-MS and electron microscopy. Au retention in the lungs and other organs was also determined. The uptake of fluorescently labeled Tf-Au NPs and PEG-Au NPs by monocyte-derived human macrophages was also evaluated in vitro. Results: We showed that Tf-Au NPs were endocytosed by AMs and were retained in the lungs to a greater extent than PEG-Au NPs. Both Au NPs acquired similar protein coronas after incubation in rat broncho-alveolar lavage fluid (BALf). The translocation of Au from both NPs to other organs was less than 0.5% of the instilled dose. Transferrin coating enhanced the uptake of Au NPs by primary monocyte-derived human macrophages. Conclusions: We report that coating of NP surface with transferrin can target them to rat AMs and human monocyte-derived macrophages. NP functionalization with transferrin may enhance NP-based therapeutic strategies for lung diseases.


Subject(s)
Gold/chemistry , Lung/metabolism , Metal Nanoparticles/chemistry , Transferrin/chemistry , Adult , Animals , Bronchoalveolar Lavage Fluid , Drug Delivery Systems , Humans , Macrophages, Alveolar/metabolism , Male , Pharmacokinetics , Protein Corona/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL