Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Publication year range
1.
Small ; 19(18): e2207492, 2023 May.
Article in English | MEDLINE | ID: mdl-36782364

ABSTRACT

The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid ß-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of ß-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-ß-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem  = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex  = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.

2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834854

ABSTRACT

Zinc oxide (ZnO) tetrapods as microparticles with nanostructured surfaces show peculiar physical properties and anti-infective activities. The aim of this study was to investigate the antibacterial and bactericidal properties of ZnO tetrapods in comparison to spherical, unstructured ZnO particles. Additionally, killing rates of either methylene blue-treated or untreated tetrapods and spherical ZnO particles for Gram-negative and Gram-positive bacteria species were determined. ZnO tetrapods showed considerable bactericidal activity against Staphylococcus aureus, and Klebsiella pneumoniae isolates, including multi-resistant strains, while Pseudomonas aeruginosa and Enterococcus faecalis remained unaffected. Almost complete elimination was reached after 24 h for Staphylococcus aureus at 0.5 mg/mL and Klebsiella pneumoniae at 0.25 mg/mL. Surface modifications of spherical ZnO particles by treatment with methylene blue even improved the antibacterial activity against Staphylococcus aureus. Nanostructured surfaces of ZnO particles provide active and modifiable interfaces for the contact with and killing of bacteria. The application of solid state chemistry, i.e., the direct matter-to-matter interaction between active agent and bacterium, in the form of ZnO tetrapods and non-soluble ZnO particles, can add an additional principle to the spectrum of antibacterial mechanisms, which is, in contrast to soluble antibiotics, depending on the direct local contact with the microorganisms on tissue or material surfaces.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Zinc Oxide , Humans , Zinc Oxide/chemistry , Methylene Blue , Anti-Bacterial Agents/chemistry , Bacteria , Klebsiella pneumoniae , Microbial Sensitivity Tests
3.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240419

ABSTRACT

Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.


Subject(s)
Brain Neoplasms , Glioblastoma , Gossypol , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Gossypol/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , TOR Serine-Threonine Kinases , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
4.
Mar Drugs ; 20(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35736205

ABSTRACT

Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and ß-glycerophosphate (ß-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.


Subject(s)
Chitosan , Hydrogels , Chitosan/chemistry , Collagen/chemistry , Endothelial Cells , Humans , Hydrogels/chemistry , Polysaccharides
5.
Nano Lett ; 21(8): 3690-3697, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33724848

ABSTRACT

The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.


Subject(s)
Graphite , Hydrogels , Electric Conductivity , Porosity
6.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328815

ABSTRACT

Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.


Subject(s)
Graphite , Mesenchymal Stem Cells , Cell Adhesion , Cell Differentiation , DNA/metabolism , Endothelial Cells , Graphite/chemistry , Humans , Mesenchymal Stem Cells/metabolism , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
7.
Adv Funct Mater ; 31(22)2021 May 26.
Article in English | MEDLINE | ID: mdl-36213489

ABSTRACT

Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, anti-septic, angiogenic, and moisturizing properties, we have developed a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles. To achieve the smart release of VEGF, t-ZnO was modified by chemical treatment and activated through UV/visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, were adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF decorated t-ZnO-laden hydrogel patches showed low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests showed promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.

8.
Small ; 16(2): e1905141, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31814275

ABSTRACT

The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1- x Znx )(N1- x Ox ) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies.

9.
Nanotechnology ; 30(34): 34LT01, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31067518

ABSTRACT

We investigate the electromagnetic shielding properties of an ultra-porous lightweight nanomaterial named aerogalnite (aero-GaN). Aero-GaN is made up of randomly arranged hollow GaN microtetrapods, which are obtained by direct growth using hydride vapor phase epitaxy of GaN on the sacrificial network of ZnO microtetrapods. A 2 mm thick aero-GaN sample exhibits electromagnetic shielding properties in the X-band similar to solid structures based on metal foams or carbon nanomaterials. Aero-GaN has a weight four to five orders of magnitude lower than the weight of metals.

10.
Nanotechnology ; 30(6): 065501, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30523820

ABSTRACT

Novel gas sensors have been realized by decorating clusters of tubular Aerographite with CdTe using magnetron sputtering techniques. Subsequently, individual microtubes were separated and electrically contacted on a SiO2/Si substrate with pre-patterned electrodes. Cathodoluminescence, electron microscopy and electrical characterization prove the successful formation of a polycrystalline CdTe thin film on Aerographite enabling an excellent gas response to ammonia. Furthermore, the dynamical response to ammonia exposure has been investigated, highlighting the quick response and recovery times of the sensor, which is highly beneficial for extremely short on/off cycles. Therefore, this gas sensor reveals a large potential for cheap, highly selective, reliable and low-power gas sensors, which are especially important for hazardous gases such as ammonia.

11.
J Immunol ; 196(11): 4566-75, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183601

ABSTRACT

Virtually all efforts to generate an effective protection against the life-long, recurrent genital infections caused by HSV-2 have failed. Apart from sexual transmission, the virus can also be transmitted from mothers to neonates, and it is a key facilitator of HIV coacquisition. In this article, we uncover a nanoimmunotherapy using specially designed zinc oxide tetrapod nanoparticles (ZOTEN) with engineered oxygen vacancies. We demonstrate that ZOTEN, when used intravaginally as a microbicide, is an effective suppressor of HSV-2 genital infection in female BALB/c mice. The strong HSV-2 trapping ability of ZOTEN significantly reduced the clinical signs of vaginal infection and effectively decreased animal mortality. In parallel, ZOTEN promoted the presentation of bound HSV-2 virions to mucosal APCs, enhancing T cell-mediated and Ab-mediated responses to the infection, and thereby suppressing a reinfection. We also found that ZOTEN exhibits strong adjuvant-like properties, which is highly comparable with alum, a commonly used adjuvant. Overall, to our knowledge, our study provides the very first evidence for the protective efficacy of an intravaginal microbicide/vaccine or microbivac platform against primary and secondary female genital herpes infections.


Subject(s)
Herpes Genitalis/drug therapy , Herpes Genitalis/immunology , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/immunology , Nanoparticles/administration & dosage , Nanoparticles/therapeutic use , Zinc Oxide/administration & dosage , Zinc Oxide/therapeutic use , Animals , Cells, Cultured , Chlorocebus aethiops , Female , HeLa Cells , Herpes Genitalis/pathology , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nanoparticles/chemistry , Particle Size , Structure-Activity Relationship , Vero Cells , Zinc Oxide/pharmacology
12.
Nano Lett ; 17(10): 6235-6240, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28819978

ABSTRACT

Nanoparticles have been used for engineering composite materials to improve the intrinsic properties and/or add functionalities to pristine polymers. The majority of the studies have focused on the incorporation of spherical nanoparticles within the composite fibers. Herein, we incorporate anisotropic branched-shaped zinc oxide (ZnO) nanoparticles into fibrous scaffolds fabricated by electrospinning. The addition of the branched particles resulted in their protrusion from fibers, mimicking the architecture of a rose stem. We demonstrated that the encapsulation of different-shape particles significantly influences the physicochemical and biological activities of the resultant composite scaffolds. In particular, the branched nanoparticles induced heterogeneous crystallization of the polymeric matrix and enhance the ultimate mechanical strain and strength. Moreover, the three-dimensional (3D) nature of the branched ZnO nanoparticles enhanced adhesion properties of the composite scaffolds to the tissues. In addition, the rose stem-like constructs offered excellent antibacterial activity, while supporting the growth of eukaryote cells.


Subject(s)
Nanofibers/chemistry , Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Adhesion/drug effects , Bacterial Infections/prevention & control , Cell Line , Humans , Materials Testing , Nanofibers/ultrastructure , Nanoparticles/ultrastructure , Nanostructures/chemistry , Nanostructures/ultrastructure , Stress, Mechanical , Tensile Strength , Tissue Engineering , Zinc Oxide/pharmacology
13.
Small ; 13(16)2017 04.
Article in English | MEDLINE | ID: mdl-28186367

ABSTRACT

A composed morphology of iron oxide microstructures covered with very thin nanowires (NWs) with diameter of 15-50 nm has been presented. By oxidizing metallic Fe microparticles at 255 °C for 12 and 24 h, dense iron oxide NW networks bridging prepatterned Au/Cr pads are obtained. X-ray photoelectron spectroscopy studies reveal formation of α-Fe2 O3 and Fe3 O4 on the surface and it is confirmed by detailed high-resolution transmission electron microscopy and selected area electron diffraction (SAED) investigations that NWs are single phase α-Fe2 O3 and some domains of single phase Fe3 O4 . Localized synthesis of such nano- and microparticles directly on sensor platform/structure at 255 °C for 24 h and reoxidation at 650 °C for 0.2-2 h, yield in highly performance and reliable detection of acetone vapor with fast response and recovery times. First nanosensors on a single α-Fe2 O3 nanowire are fabricated and studied showing excellent performances and an increase in acetone response by decrease of their diameter was developed. The facile technological approach enables this nanomaterial as candidate for a range of applications in the field of nanoelectronics such as nanosensors and biomedicine devices, especially for breath analysis in the treatment of diabetes patients.

14.
Mol Vis ; 23: 26-38, 2017.
Article in English | MEDLINE | ID: mdl-28275313

ABSTRACT

PURPOSE: Infection of the human cornea by herpes simplex virus type-1 (HSV-1) can cause significant vision loss. The purpose of this study was to develop an ex vivo model to visualize viral growth and spread in the cornea. The model was also used to analyze cytokine production and study the antiviral effects of zinc oxide tetrapods. METHODS: A ß-galactosidase-expressing recombinant virus, HSV-1(KOS)tk12, was used to demonstrate the ability of the virus to enter and develop blue plaques on human corneal epithelial (HCE) cells and corneal tissues. Freshly obtained porcine corneas were cultured and then scratched before infection with HSV-1(KOS)tk12. The blue plaques on the corneas were imaged using a stereomicroscope. Western blot analysis for HSV-1 proteins was performed to verify HSV-1 infection of the cornea. Using the ex vivo model, zinc oxide tetrapods were tested for their anti-HSV-1 potential, and a cytokine profile was developed to assess the effects of the treatment. RESULTS: Cultured corneas and the use of ß-galactosidase-expressing HSV-1(KOS)tk12 virus can provide an attractive ex vivo model to visualize and study HSV-1 entry and spread of the infection in tissues. We found that unlike cultured HCE cells, which demonstrated nearly 100% infectivity, HSV-1 infection of the cultured cornea was more restrictive and took longer to develop. We also found that the zinc oxide tetrapod-shaped nano- and microstructures inhibited HSV infection of the cultured cells, as well as the cultured corneas. The cytokine profile of the infected samples was consistent with previous studies of HSV-1 corneal infection. CONCLUSIONS: The ability to visualize HSV-1 growth and spread in corneal tissues can provide new details about HSV-1 infection of the cornea and the efficacy of new cornea-specific antiviral drug candidates. The ex vivo model also demonstrates antiviral effects of zinc oxide tetrapods and adequately portrays the drug delivery issues that cornea-specific treatments face.


Subject(s)
Cornea/pathology , Cornea/virology , Herpes Simplex/virology , Zinc Oxide/pharmacology , Animals , Cells, Cultured , Cornea/drug effects , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/virology , Epithelium, Corneal/pathology , Epithelium, Corneal/virology , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpesvirus 1, Human/drug effects , Humans , Immunity, Innate/drug effects , Sus scrofa , Thymidine Kinase/metabolism , Virus Internalization/drug effects
15.
Phys Chem Chem Phys ; 18(10): 7114-23, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26883913

ABSTRACT

Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

16.
Phys Chem Chem Phys ; 17(35): 22923-33, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26267361

ABSTRACT

A viable lightweight absorber is the current need for stealth technology as well as microwave absorption. Several microwave absorbers have been developed, but it is still a challenge to fabricate an absorber that facilitates microwave absorption in broad bandwidth or covers the maximum portion of the frequency range 2-18 GHz, the commonly used range for radar and other applications. Therefore, it is highly required to develop a wide bandwidth absorber that can provide microwave absorption in the most part of the frequency range 2-18 GHz while simultaneously being lightweight and can be fabricated in desired bulk quantities by the cost-effective synthesis methods. In this paper, an attempt has been made to design an ultra-wide bandwidth absorber with enhanced microwave absorption response by using nickel-phosphorus coated tetrapod-shaped ZnO (Ni-P coated T-ZnO). In the Ni-P coated T-ZnO absorber, ZnO acts as a good dielectric contributor, while Ni as a magnetic constituent to obtain a microwave absorbing composite material, which has favorable absorption properties. Ni-P coated ZnO nano-microstructures are synthesized by a simple and scalable two-step process. First, tetrapod-shaped ZnO (T-ZnO) structures have been grown by the flame transport synthesis (FTS) approach in a single step process and then they have been coated with Ni-P by an electroless coating technique. Their morphology, degree of crystallinity and existing phases were studied in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The complex permittivity and permeability of the "as-fabricated" T-ZnO and Ni-P coated T-ZnO have been measured in the frequency range of 4-14 GHz and their microwave absorption properties are computed using the coaxial transmission-reflection method. The strongest reflection loss (RL) peak value of -36.41 dB has been obtained at a frequency of ∼8.99 GHz with coating thickness of 3.4 mm for the Ni-P coated T-ZnO sample with a broad bandwidth of 10.0 GHz (RL < -10 dB) in the frequency range of 4.0-14.0 GHz.

17.
Macromol Rapid Commun ; 35(18): 1551-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25132167

ABSTRACT

The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer-polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.


Subject(s)
Chemistry, Physical/methods , Models, Chemical , Polymers/chemistry , Adhesiveness , Caproates/chemistry , Lactones/chemistry , Molecular Structure , Polymethyl Methacrylate/chemistry , Vinyl Chloride/chemistry
18.
Materials (Basel) ; 17(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730918

ABSTRACT

The aim of this study was to evaluate the influence of weight ratio, the shape of the precursor particles, and the application of a phosphate-monomer-containing primer on the mechanical properties of polymer infiltrated ceramic networks (PICNs) using zinc oxide. Two different types of zinc oxide particles were used as precursors to produce zinc oxide networks by sintering, each with two different densities resulting in two different weight ratios of the PICNs. For each of these different networks, two subgroups were built: one involving the application of a phosphate-monomer-containing primer prior to the infiltration of Bis-GMA/TEGDMA and one without. Elastic modulus and flexural strength were determined by using the three-point bending test. Vertical substance loss determined by the chewing simulation was evaluated with a laser scanning microscope. There was a statistically significant influence of the type of precursor particles on the flexural strength and in some cases on the elastic modulus. The application of a primer lead to a significant increase in the flexural strength and in most cases also in the elastic modulus. A higher weight ratio of zinc oxide led to a significantly higher elastic modulus. Few statistically significant differences were found for the vertical substance loss. By varying the shape of the particles and the weight fraction of zinc oxide, the mechanical properties of the investigated PICN can be controlled. The use of a phosphate-monomer-containing primer strengthens the bond between the infiltrated polymer and the zinc oxide, thus increasing the strength of the composite.

19.
Materials (Basel) ; 17(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38255573

ABSTRACT

This work studies the technological preparation conditions, morphology, structural characteristics and elemental composition, and optical and photoluminescent properties of GaSe single crystals and Eu-doped ß-Ga2O3 nanoformations on ε-GaSe:Eu single crystal substrate, obtained by heat treatment at 750-900 °C, with a duration from 30 min to 12 h, in water vapor-enriched atmosphere, of GaSe plates doped with 0.02-3.00 at. % Eu. The defects on the (0001) surface of GaSe:Eu plates serve as nucleation centers of ß-Ga2O3:Eu crystallites. For 0.02 at. % Eu doping, the fundamental absorption edge of GaSe:Eu crystals at room temperature is formed by n = 1 direct excitons, while at 3.00 at. % doping, Eu completely shields the electron-hole bonds. The band gap of nanostructured ß-Ga2O3:Eu layer, determined from diffuse reflectance spectra, depends on the dopant concentration and ranges from 4.64 eV to 4.87 eV, for 3.00 and 0.05 at. % doping, respectively. At 0.02 at. % doping level, the PL spectrum of ε-GaSe:Eu single crystals consists of the n = 1 exciton band, together with the impurity band with a maximum intensity at 800 nm. Fabry-Perrot cavities with a width of 9.3 µm are formed in these single crystals, which determine the interference structure of the impurity PL band. At 1.00-3.00 at. % Eu concentrations, the PL spectra of GaSe:Eu single crystals and ß-Ga2O3:Eu nanowire/nanolamellae layers are determined by electronic transitions of Eu2+ and Eu3+ ions.

20.
Sci Rep ; 14(1): 4452, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396005

ABSTRACT

To carry out the preclinical and histological evaluation of a novel nanotechnology-based microshunt for drainage glaucoma surgery. Twelve New Zealand White rabbits were implanted with a novel microshunt and followed up for 6 weeks. The new material composite consists of the silicone polydimethylsiloxane (PDMS) and tetrapodal Zinc Oxide (ZnO-T) nano-/microparticles. The microshunts were inserted ab externo to connect the subconjunctival space with the anterior chamber. Animals were euthanized after 2 and 6 weeks for histological evaluation. Ocular health and implant position were assessed at postoperative days 1, 3, 7 and twice a week thereafter by slit lamp biomicroscopy. Intraocular pressure (IOP) was measured using rebound tonometry. A good tolerability was observed in both short- and medium-term follow-up. Intraocular pressure was reduced following surgery but increased to preoperative levels after 2 weeks. No clinical or histological signs of inflammatory or toxic reactions were seen; the fibrotic encapsulation was barely noticeable after two weeks and very mild after six weeks. The new material composite PDMS/ZnO-T is well tolerated and the associated foreign body fibrotic reaction quite mild. The new microshunt reduces the IOP for 2 weeks. Further research will elucidate a tube-like shape to improve and prolong outflow performance and longer follow-up to exclude medium-term adverse effects.


Subject(s)
Glaucoma Drainage Implants , Glaucoma , Zinc Oxide , Animals , Rabbits , Glaucoma Drainage Implants/adverse effects , Glaucoma/surgery , Glaucoma/etiology , Intraocular Pressure , Tonometry, Ocular , Anterior Chamber/surgery , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL