ABSTRACT
In Europe, the Neolithic transition (8,000-4,000 B.C.) from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 B.C.). However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500-4,900 calibrated B.C.) and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (nâ=â42) and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500-4,900 calibrated B.C.). We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (nâ=â23,394) and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting a major genetic input from this area during the advent of farming in Europe. However, the LBK population also showed unique genetic features including a clearly distinct distribution of mitochondrial haplogroup frequencies, confirming that major demographic events continued to take place in Europe after the early Neolithic.
Subject(s)
Agriculture , DNA, Mitochondrial/genetics , Emigration and Immigration , Fossils , Europe , HumansABSTRACT
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-ß is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Microbiota , Humans , Alzheimer Disease/pathology , Gastrointestinal Microbiome/physiology , Risk Factors , Amyloid beta-Peptides/metabolismABSTRACT
Antibiotic overuse has promoted the spread of antimicrobial resistance (AMR) with significant health and economic consequences. Genome sequencing reveals the widespread presence of antimicrobial resistance genes (ARGs) in diverse microbial environments. Hence, surveillance of resistance reservoirs, like the rarely explored oral microbiome, is necessary to combat AMR. Here, we characterise the development of the paediatric oral resistome and investigate its role in dental caries in 221 twin children (124 females and 97 males) sampled at three time points over the first decade of life. From 530 oral metagenomes, we identify 309 ARGs, which significantly cluster by age, with host genetic effects detected from infancy onwards. Our results suggest potential mobilisation of ARGs increases with age as the AMR associated mobile genetic element, Tn916 transposase was co-located with more species and ARGs in older children. We find a depletion of ARGs and species in dental caries compared to health. This trend reverses in restored teeth. Here we show the paediatric oral resistome is an inherent and dynamic component of the oral microbiome, with a potential role in transmission of AMR and dysbiosis.
Subject(s)
Dental Caries , Microbiota , Male , Female , Humans , Child , Drug Resistance, Bacterial/genetics , Dental Caries/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Microbiota/geneticsABSTRACT
Next Generation sequencing has greatly progressed the exploration of the oral microbiome's role in dental diseases, however, there has been little focus on the effect of sample storage conditions and their interaction with DNA extraction method. Dental plaque samples collected from 20 healthy participants were pooled and stored in either 75% ethanol or Bead solution for up to 6-months at -80 °C, prior to DNA extraction with either QIAamp (non-bead beating) or PowerSoil (bead-beating) kit, followed by Illumina sequencing of 16S rRNA gene. We found that storage media and not extraction method had the biggest influence on the diversity and abundance of the oral microbiota recovered. Samples stored in Bead solution, independent of the extraction kit, retrieved higher diversity (PowerSoil p = 1.64E-07, QIAamp p = 0.0085) and had dissimilar overall ecologies as indicated by lower level of shared diversity (PowerSoil p = 0.0000237, QIAamp p = 0.0088). Comparatively, samples stored in Bead solution and extracted with PowerSoil recovered a higher abundance of Streptococcus species. These data indicate that Bead solution can preserve the oral microbiome in dental plaque reliably, for periods of up to 6-months at -80 °C, and is compatible, with either a bead-beating or non-bead beating DNA extraction method.
Subject(s)
Dental Plaque/microbiology , Gastrointestinal Microbiome/genetics , Mouth/microbiology , Preservation, Biological/methods , Specimen Handling , DNA, Bacterial/genetics , Ethanol , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptococcus/genetics , Young AdultABSTRACT
Children's oral health is in a dire state, with dental decay (caries) being one of the most common chronic diseases. While the role of bacteria in the oral microbiome and dental caries is established, the contribution of fungi is relatively unknown. We assessed the oral mycobiome in childhood (n = 17), to determine if the composition of fungi varies between children with and without caries. Oral mycobiome composition was assessed by using Illumina MiSeq to sequence the ITS2 region, which was amplified from dental plaque. This revealed that the oral mycobiome in the investigated children contained 46 fungal species. Candida albicans was the most abundant species and was ubiquitous in all samples, indicating this species may not be involved in caries development as previously suggested. While the overall diversity of fungi was similar, independent of caries status (p > 0.05), we found caries influenced the abundance of specific fungi. Children without caries had a significantly higher abundance of 17 species compared to children with caries, which had three enriched species (p < 0.001). While the differentially abundant species between health and caries may be specific to an Australian population, our findings indicate the mycobiome plays a role in oral health.
ABSTRACT
Bacteria are not only ubiquitous on earth but can also be incredibly diverse within clean laboratories and reagents. The presence of both living and dead bacteria in laboratory environments and reagents is especially problematic when examining samples with low endogenous content (e.g., skin swabs, tissue biopsies, ice, water, degraded forensic samples or ancient material), where contaminants can outnumber endogenous microorganisms within samples. The contribution of contaminants within high-throughput studies remains poorly understood because of the relatively low number of contaminant surveys. Here, we examined 144 negative control samples (extraction blank and no-template amplification controls) collected in both typical molecular laboratories and an ultraclean ancient DNA laboratory over 5 years to characterize long-term contaminant diversity. We additionally compared the contaminant content within a home-made silica-based extraction method, commonly used to analyse low endogenous content samples, with a widely used commercial DNA extraction kit. The contaminant taxonomic profile of the ultraclean ancient DNA laboratory was unique compared to modern molecular biology laboratories, and changed over time according to researcher, month and season. The commercial kit also contained higher microbial diversity and several human-associated taxa in comparison to the home-made silica extraction protocol. We recommend a minimum of two strategies to reduce the impacts of laboratory contaminants within low-biomass metagenomic studies: (a) extraction blank controls should be included and sequenced with every batch of extractions and (b) the contributions of laboratory contamination should be assessed and reported in each high-throughput metagenomic study.
Subject(s)
DNA Contamination , Diagnostic Errors , Metagenomics/methods , Molecular Biology/methodsABSTRACT
Next-Generation Sequencing is providing insights into the critical role of the oral microbiome in dental diseases. Application of this method can require the collection of dental plaque from large cohorts in field-type conditions, which necessitates a transport medium to preserve the microbiome composition. We evaluated the use of two transport media, VMG II and RNAprotect® Bacteria Reagent (Qiagen), for room temperature storage of dental plaque. VMG II has not previously been assessed for suitability to store microbiome samples intended for deep sequencing. We compared the microbiome composition of dental plaque (total n=23) stored in either VMG II or RNAprotect Bacteria at room temperature with immediately-frozen plaque. 454 sequencing of 16S gene amplicons was used to assess the plaque microbial composition. While the bacterial diversity recovered was similar between storage conditions (p>0.1), the abundance of bacteria was influenced by storage environment. Dental plaque stored in VMG II was most similar to immediately-frozen material, with only one of the 324 bacterial species being differentially abundant (Neisseria, p<0.001). In comparison, dental plaque stored in RNAprotect Bacteria had 24 differentially abundant species compared with the immediately-frozen samples and a significantly different phylogenetic structure (p<0.01). We have identified VMG II as a new transport medium for room temperature storage of dental plaque samples being subject to Next-Generation Sequencing that stabilises oral microbial DNA makeup.
Subject(s)
Culture Media/chemistry , High-Throughput Nucleotide Sequencing/methods , Microbiota , Mouth/microbiology , Preservation, Biological/methods , Specimen Handling/methods , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacteriological Techniques/methods , DNA, Bacterial , Dental Plaque/microbiology , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Stomatognathic Diseases/microbiology , TemperatureABSTRACT
BACKGROUND: Periodontal disease is highly prevalent amongst domestic cats, causing pain, gingival bleeding, reduced food intake, loss of teeth and possibly impacts on overall systemic health. Diet has been suggested to play a role in the development of periodontal disease in cats. There is a complete lack of information about how diet (composition and texture) affects the feline oral microbiome, the composition of which may influence oral health and the development of periodontal disease. We undertook a pilot study to assess if lifelong feeding of dry extruded kibble or wet (canned and/or fresh meat combinations) diets to cats (n = 10) with variable oral health affected the microbiome. RESULTS: Oral microbiome composition was assessed by amplifying the V1-V3 region of the 16S gene from supragingival dental plaque DNA extracts. These amplicons were sequenced using Illumina technology. This deep sequencing revealed the feline oral microbiome to be diverse, containing 411 bacterial species from 14 phyla. We found that diet had a significant influence on the overall diversity and abundance of specific bacteria in the oral environment. Cats fed a dry diet exclusively had higher bacterial diversity in their oral microbiome than wet-food diet cats (p < 0.001). Amongst this higher diversity, cats on dry-food diets had a higher abundance of Porphyromonas spp. (p < 0.01) and Treponema spp. (p < 0.01). CONCLUSIONS: While we observed differences in the oral microbiome between cats on the two diets assessed, the relationship between these differences and gingival health was unclear. Our preliminary results indicate that further analysis of the influence of dietary constituents and texture on the feline oral microbiome is required to reveal the relationship between diet, the oral microbiome and gingival health in cats.
Subject(s)
Animal Feed/analysis , Bacteria/classification , Dental Plaque/microbiology , Diet , Microbiota/genetics , Mouth/microbiology , Animals , Bacteria/genetics , Cats , DNA, Bacterial/genetics , Feeding Behavior , Gingiva/microbiology , Oral Health , Periodontal Diseases/microbiology , RNA, Ribosomal, 16S/geneticsABSTRACT
Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3-V4 region) to compare microbial communities in layers ranging in pH from 4.5-7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that â¼ 60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.
Subject(s)
Bacteria , Biodiversity , Dental Caries/microbiology , Hydrogen-Ion Concentration , Microbiota , Computational Biology , DNA, Bacterial , High-Throughput Nucleotide Sequencing , Humans , Metagenome , Phylogeny , RNA, Ribosomal, 16S/geneticsABSTRACT
The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning â¼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in â¼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.
Subject(s)
Archaeology , Dental Plaque/genetics , Diet , Industry , Metagenome/genetics , Mouth Mucosa/microbiology , Biological Evolution , Dental Plaque/microbiology , High-Throughput Nucleotide Sequencing , Humans , Mouth Mucosa/pathologyABSTRACT
The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.