Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Hum Genet ; 92(1): 15-27, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23261300

ABSTRACT

The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry. We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p = 0.007 and p = 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of coding variants with a nominal signal of association with RA (p < 0.05) after adjusting for the best signal of association at the loci (p(enrichment) = 6.4 × 10(-4)). For one locus containing CD2, we found that a missense variant, rs699738 (c.798C>A [p.His266Gln]), and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p = 4.6 × 10(-6)). Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing heritability of RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Gene Frequency , Genetic Predisposition to Disease , Genetic Variation , Polymorphism, Single Nucleotide , Exons , Genome-Wide Association Study , Humans , Risk Factors
2.
Hum Mutat ; 34(1): 255-65, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22949387

ABSTRACT

Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], MutPred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R(2)  = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions.


Subject(s)
Computational Biology/methods , DNA Mismatch Repair/genetics , Genetic Predisposition to Disease/genetics , Mutation, Missense , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Bayes Theorem , Calibration , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Computational Biology/classification , Computational Biology/standards , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Humans , Mismatch Repair Endonuclease PMS2 , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Regression Analysis , Reproducibility of Results
3.
medRxiv ; 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36711907

ABSTRACT

Deep mutational scanning assays enable the functional assessment of variants in high throughput. Phenotypic measurements from these assays are broadly concordant with clinical outcomes but are prone to noise at the individual variant level. We develop a framework to exploit related measurements within and across experimental assays to jointly estimate variant impact. Drawing from a large corpus of deep mutational scanning data, we collectively estimate the mean functional effect per AA residue position within each gene, normalize observed functional effects by substitution type, and make estimates for individual allelic variants with a pipeline called FUSE (Functional Substitution Estimation). FUSE improves the correlation of functional screening datasets covering the same variants, better separates estimated functional impacts for known pathogenic and benign variants (ClinVar BRCA1, p=2.24×10-51), and increases the number of variants for which predictions can be made (2,741 to 10,347) by inferring additional variant effects for substitutions not experimentally screened. For UK Biobank patients who carry a rare variant in TP53, FUSE significantly improves the separation of patients who develop cancer syndromes from those without cancer (p=1.77×10-6). These approaches promise to improve estimates of variant impact and broaden the utility of screening data generated from functional assays.

4.
Genome Biol ; 15(3): R53, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24667040

ABSTRACT

BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.


Subject(s)
Databases, Genetic/standards , Genetic Testing/methods , Genomics/methods , Peer Review, Research , Sequence Analysis, DNA/methods , Child , Female , Financing, Organized , Genetic Testing/economics , Genetic Testing/standards , Genomics/economics , Genomics/standards , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Male , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/standards
SELECTION OF CITATIONS
SEARCH DETAIL