Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Genet ; 99(5): 694-703, 2021 05.
Article in English | MEDLINE | ID: mdl-33495992

ABSTRACT

Protein disulfide isomerase A6 (PDIA6) is an unfolded protein response (UPR)-regulating protein. PDIA6 regulates the UPR sensing proteins, Inositol requiring enzyme 1, and EIF2AK3. Biallelic inactivation of the two genes in mice and humans resulted in embryonic lethality, diabetes, skeletal defects, and renal insufficiency. We recently showed that PDIA6 inactivation in mice caused embryonic and early lethality, diabetes and immunodeficiency. Here, we present a case with asphyxiating thoracic dystrophy (ATD) syndrome and infantile-onset diabetes. Whole exome sequencing revealed a homozygous frameshift variant in the PDIA6 gene. RNA expression was reduced in a gene dosage-dependent manner, supporting a loss-of-function effect of this variant. Phenotypic correlation with the mouse model recapitulated the growth defect and delay, early lethality, coagulation, diabetes, immunological, and polycystic kidney disease phenotypes. In general, the phenotype of the current patient is consistent with phenotypes associated with the disruption of PDIA6 and the sensors of UPR in mice and humans. This is the first study to associate ATD to the UPR gene, PDIA6. We recommend screening ATD cases with or without insulin-dependent diabetes for variants in PDIA6.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Infant, Premature, Diseases/genetics , Loss of Function Mutation , Protein Disulfide-Isomerases/genetics , Unfolded Protein Response/genetics , Abnormalities, Multiple/genetics , Alleles , Animals , Consanguinity , Ellis-Van Creveld Syndrome/diagnostic imaging , Gene Knockout Techniques , Gestational Age , Humans , Magnetic Resonance Imaging , Male , Mice , Pedigree
2.
Hum Mutat ; 39(4): 461-470, 2018 04.
Article in English | MEDLINE | ID: mdl-29282788

ABSTRACT

Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.


Subject(s)
DNA, Mitochondrial/genetics , Heredodegenerative Disorders, Nervous System , Liver Diseases , Membrane Proteins/genetics , Mitochondrial Diseases , Mitochondrial Proteins/genetics , Peripheral Nervous System Diseases , Heredodegenerative Disorders, Nervous System/diagnosis , Heredodegenerative Disorders, Nervous System/genetics , Heredodegenerative Disorders, Nervous System/metabolism , Humans , Liver/metabolism , Liver Diseases/diagnosis , Liver Diseases/genetics , Liver Diseases/metabolism , Mitochondria/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mutation , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism
3.
Genome Med ; 15(1): 114, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098057

ABSTRACT

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Subject(s)
Exome , Inheritance Patterns , Infant, Newborn , Humans , Genes, Recessive , Mutation , Exome Sequencing , Pedigree , Eye Proteins/genetics , Membrane Proteins/genetics , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL