Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Nano Lett ; 21(11): 4774-4779, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34032435

ABSTRACT

The COVID-19 pandemic led to development of mRNA vaccines, which became a leading anti-SARS-CoV-2 immunization platform. Preclinical studies are limited to infection-prone animals such as hamsters and monkeys in which protective efficacy of vaccines cannot be fully appreciated. We recently reported a SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc) mRNA vaccine delivered via lipid nanoparticles (LNPs). BALB/c mice demonstrated specific immunologic responses following RBD-hFc mRNA vaccination. Now, we evaluated the protective effect of this RBD-hFc mRNA vaccine by employing the K18 human angiotensin-converting enzyme 2 (K18-hACE2) mouse model. Administration of an RBD-hFc mRNA vaccine to K18-hACE2 mice resulted in robust humoral responses comprising binding and neutralizing antibodies. In correlation with this response, 70% of vaccinated mice withstood a lethal SARS-CoV-2 dose, while all control animals succumbed to infection. To the best of our knowledge, this is the first nonreplicating mRNA vaccine study reporting protection of K18-hACE2 against a lethal SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Humans , Lipids , Mice , Mice, Inbred BALB C , Mice, Transgenic , Pandemics , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
J Clin Microbiol ; 59(8): e0056421, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33980652

ABSTRACT

According to the WHO, 75% of the world's plague cases are found in Madagascar, with an average of 200 to 700 cases suspected annually (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual proportions occurred, which raised several challenges for laboratory confirmation of cases, pointing to the need for the development of Yersinia pestis isolation procedures, especially those that can be performed in remote areas. As the WHO gold standard for plague diagnosis is bacterial culture, we sought to develop a simple method to prepare a highly selective medium, fit for use in remote areas where plague is endemic. The performance of the new medium, named improved BIN, was examined in terms of growth support and selectivity with spiked samples as well in isolating Y. pestis from clinical specimens, and it was compared to the results obtained with commercially available selective media. The preparation of the new medium is less complex and its performance was found to be superior to that of first-generation BIN medium. The growth support of the medium is higher, there is no batch diversity, and it maintains high selectivity properties. In 55 clinical specimens obtained from patients suspected to be infected with Y. pestis, approximately 20% more Y. pestis-positive isolates were identified by the improved BIN medium than were identified by commercially available selective media. The improved BIN medium is notably advantageous for the isolation of Y. pestis from clinical specimens obtained from plague patients, thus offering better surveillance tools and proper promotion of medical treatment to more patients suspected of being infected with Y. pestis.


Subject(s)
Plague , Yersinia pestis , Agar , Culture Media , Humans , Madagascar , Plague/diagnosis , Plague/epidemiology
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830227

ABSTRACT

Ricin toxin isolated from the castor bean (Ricinus communis) is one of the most potent and lethal molecules known. While the pathophysiology and clinical consequences of ricin poisoning by the parenteral route, i.e., intramuscular penetration, have been described recently in various animal models, the preceding mechanism underlying the clinical manifestations of systemic ricin poisoning has not been completely defined. Here, we show that following intramuscular administration, ricin bound preferentially to the vasculature in both mice and swine, leading to coagulopathy and widespread hemorrhages. Increased levels of circulating VEGF and decreased expression of vascular VE-cadherin caused blood vessel impairment, thereby promoting hyperpermeability in various organs. Elevated levels of soluble heparan sulfate, hyaluronic acid and syndecan-1 were measured in blood samples following ricin intoxication, indicating that the vascular glycocalyx of both mice and swine underwent extensive damage. Finally, by using side-stream dark field intravital microscopy imaging, we determined that ricin poisoning leads to microvasculature malfunctioning, as manifested by aberrant blood flow and a significant decrease in the number of diffused microvessels. These findings, which suggest that glycocalyx shedding and microcirculation dysfunction play a major role in the pathology of systemic ricin poisoning, may serve for the formulation of specifically tailored therapies for treating parenteral ricin intoxication.


Subject(s)
Endothelial Cells/drug effects , Glycocalyx/drug effects , Ricin/toxicity , Ricinus/chemistry , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Gene Expression/drug effects , Glycocalyx/chemistry , Glycocalyx/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Hydrolysis , Injections, Intramuscular , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Microcirculation/drug effects , Ricin/isolation & purification , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Swine , Syndecan-1/chemistry , Syndecan-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
4.
J Infect Dis ; 220(7): 1147-1151, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31095689

ABSTRACT

Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing contagious disease. In the plague mouse model, a single immunization with the EV76 live attenuated Y. pestis strain rapidly induced the expression of hemopexin and haptoglobin in the lung and serum, both of which are important in iron sequestration. Immunization against a concomitant lethal Y. pestis respiratory challenge was correlated with temporary inhibition of disease progression. Combining EV76-immunization and second-line antibiotic treatment, which are individually insufficient, led to a synergistic protective effect that represents a proof of concept for efficient combinational therapy in cases of infection with antibiotic-resistant strains.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Vaccines/therapeutic use , Ceftriaxone/therapeutic use , Plague/drug therapy , Plague/prevention & control , Post-Exposure Prophylaxis/methods , Yersinia pestis/immunology , Animals , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination/methods , Female , Haptoglobins/analysis , Hemopexin/analysis , Iron/metabolism , Mice , Mice, Inbred C57BL , Plague/microbiology , Treatment Outcome , Vaccines, Live, Unattenuated/immunology
5.
J Fluoresc ; 28(5): 1151-1161, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30117073

ABSTRACT

Rapid antimicrobial susceptibility tests (ASTs) are essential tool for proper treatment of patients infected by Yersinia pestis (Y. pestis), the causative agent of plague, or for post-exposure prophylaxis of a population exposed to a naturally acquired or deliberately prepared resistant variant. The standard AST of Y. pestis is based on bacterial growth and requires 24-48 h of incubation in addition to the time required for prior isolation of a bacterial culture from the clinical or environmental sample, which may take an additional 24-48 h. In this study, we present a new and rapid AST method based on a fluorescence determination of the minimum inhibitory concentration (MIC). Our method includes the incubation of bacteria with an antibiotic, followed by staining of the bacteria with oxonol dye (SynaptoGreen C4/FM1-43), which enables the rapid detection of an antibiotic's effect on bacterial viability. We show that stained, non-viable bacteria exhibit a spectral redshift and an increase in fluorescence intensity compared to intact control bacteria. Based on these criteria, we developed a rapid flow cytometer measurement procedure and a unique spectral intensity ratio (SIR) analysis that enables determination of antibiotic susceptibility for Y. pestis within 6 h instead of the 24 to 48 h required for the standard AST. This new rapid determination of antibiotic susceptibility could be crucial for reducing mortality and preventing the spread of disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Flow Cytometry , Yersinia pestis/drug effects , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Spectrometry, Fluorescence , Time Factors , Yersinia pestis/cytology
6.
PLoS Pathog ; 11(5): e1004893, 2015 May.
Article in English | MEDLINE | ID: mdl-25974210

ABSTRACT

Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2) and granulocyte colony stimulating factor (G-CSF). In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the development of novel therapies against this pathogen.


Subject(s)
Host-Pathogen Interactions , Lung/immunology , Neutrophil Infiltration , Neutrophils/immunology , Plague/immunology , Respiratory Mucosa/immunology , Yersinia pestis/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Chemokines/genetics , Chemokines/metabolism , Female , Gene Deletion , Immunity, Mucosal , Lung/metabolism , Lung/microbiology , Macrophage Activation , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Microbial Viability , Mutation , Neutrophils/metabolism , Neutrophils/microbiology , Phagocytosis , Plague/metabolism , Plague/microbiology , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Survival Analysis , Virulence , Yersinia pestis/growth & development , Yersinia pestis/metabolism , Yersinia pestis/pathogenicity
7.
J Infect Dis ; 214(6): 970-7, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27402776

ABSTRACT

BACKGROUND: Plague is initiated by Yersinia pestis, a highly virulent bacterial pathogen. In late stages of the infection, bacteria proliferate extensively in the internal organs despite the massive infiltration of neutrophils. The ineffective inflammatory response associated with tissue damage may contribute to the low efficacy of antiplague therapies during late stages of the infection. In the present study, we address the possibility of improving therapeutic efficacy by combining corticosteroid administration with antibody therapy in the mouse model of bubonic plague. METHODS: Mice were subcutaneously infected with a fully virulent Y. pestis strain and treated at progressive stages of the disease with anti-Y. pestis antibodies alone or in combination with the corticosteroid methylprednisolone. RESULTS: The addition of methylprednisolone to antibody therapy correlated with improved mouse survival, a significant decrease in the amount of neutrophils and matrix metalloproteinase 9 in the tissues, and the mitigation of tissue damage. Interestingly, the combined treatment led to a decrease in the bacterial loads in infected organs. CONCLUSIONS: Corticosteroids induce an unexpectedly effective antibacterial response apart from their antiinflammatory properties, thereby improving treatment efficacy.


Subject(s)
Antibodies, Bacterial/administration & dosage , Immunologic Factors/administration & dosage , Methylprednisolone/administration & dosage , Plague/drug therapy , Plague/pathology , Animals , Bacterial Load , Disease Models, Animal , Drug Therapy, Combination , Female , Lung/pathology , Mice , Survival Analysis , Treatment Outcome
8.
Antimicrob Agents Chemother ; 60(12): 7153-7158, 2016 12.
Article in English | MEDLINE | ID: mdl-27645243

ABSTRACT

The plant toxin ricin is considered a biological threat agent of concern and is most toxic when inhaled. Pulmonary exposure to a lethal dose of ricin can be redressed by treatment with antiricin antibodies; however, late antitoxin intervention is of limited efficacy. This limitation is associated with overt lung damage, clinically manifested as severe pulmonary inflammation, which develops over time. Increased evidence indicates that ciprofloxacin, a broad-spectrum antimicrobial agent, possesses immunomodulatory properties. Here we demonstrate that while antiricin antibody administration at late hours after intranasal exposure to ricin confers limited protection to mice, highly efficient protection can be achieved by adding ciprofloxacin to the antibody treatment. We further demonstrate that parameters associated with lung injury, in particular, pulmonary proinflammatory cytokine production, neutrophil migration, and edema, are sharply reduced in ricin-intoxicated mice that were treated with ciprofloxacin. The presented data highlight the potential clinical application of ciprofloxacin as a beneficial immunomodulatory agent in the course of ricin intoxication.


Subject(s)
Antitoxins/pharmacology , Ciprofloxacin/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Ricin/toxicity , Administration, Intranasal , Animals , Cytokines/metabolism , Female , Immunologic Factors/pharmacology , Mice, Inbred Strains , Neutrophil Infiltration/drug effects , Pneumonia/metabolism , Pneumonia/mortality , Ricin/administration & dosage , Ricin/immunology
9.
Sci Rep ; 14(1): 11637, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773158

ABSTRACT

Ricin, an extremely potent toxin produced from the seeds of castor plant, Ricinus communis, is ribosome-inactivating protein that blocks cell-protein synthesis. It is considered a biological threat due to worldwide availability of castor beans, massive quantities as a by-product of castor oil production, high stability and ease of production. The consequence of exposure to lethal dose of ricin was extensively described in various animal models. However, it is assumed that in case of aerosolized ricin bioterror attack, the majority of individuals would be exposed to sublethal doses rather than to lethal ones. Therefore, the purpose of current study was to assess short- and long-term effects on physiological parameters and function following sublethal pulmonary exposure. We show that in the short-term, sublethal exposure of mice to ricin resulted in acute lung injury, including interstitial pneumonia, cytokine storm, neutrophil influx, edema and cellular death. This damage was manifested in reduced lung performance and physiological function. Interestingly, although in the long-term, mice recovered from acute lung damage and restored pulmonary and physiological functionality, the reparative process was associated with lasting fibrotic lesions. Therefore, restriction of short-term acute phase of the disease and management of long-term pulmonary fibrosis by medical countermeasures is expected to facilitate the quality of life of exposed survivors.


Subject(s)
Ricin , Animals , Ricin/toxicity , Mice , Lung/drug effects , Lung/pathology , Cytokines/metabolism , Lung Injury/chemically induced , Lung Injury/pathology , Female , Disease Models, Animal
10.
Toxins (Basel) ; 16(2)2024 02 12.
Article in English | MEDLINE | ID: mdl-38393180

ABSTRACT

Ricin, a highly potent plant-derived toxin, is considered a potential bioterrorism weapon due to its pronounced toxicity, high availability, and ease of preparation. Acute damage following pulmonary ricinosis is characterized by local cytokine storm, massive neutrophil infiltration, and edema formation, resulting in respiratory insufficiency and death. A designated equine polyclonal antibody-based (antitoxin) treatment was developed in our laboratory and proved efficacious in alleviating lung injury and increasing survival rates. Although short-term pathogenesis was thoroughly characterized in antitoxin-treated mice, the long-term damage in surviving mice was never determined. In this study, long-term consequences of ricin intoxication were evaluated 30 days post-exposure in mice that survived antitoxin treatment. Significant pulmonary sequelae were demonstrated in surviving antitoxin-treated mice, as reflected by prominent histopathological changes, moderate fibrosis, increased lung hyperpermeability, and decreased lung compliance. The presented data highlight, for the first time to our knowledge, the possibility of long-term damage development in mice that survived lethal-dose pulmonary exposure to ricin due to antitoxin treatment.


Subject(s)
Antitoxins , Lung Injury , Respiratory Insufficiency , Ricin , Animals , Horses , Mice , Antitoxins/therapeutic use , Ricin/toxicity , Lung/pathology , Lung Injury/drug therapy
11.
BMC Genom Data ; 25(1): 47, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783201

ABSTRACT

OBJECTIVE: Burkholderia pseudomallei, the etiological cause of melioidosis, is a soil saprophyte endemic in South-East Asia, where it constitutes a public health concern of high-priority. Melioidosis cases are sporadically identified in nonendemic areas, usually associated with travelers or import of goods from endemic regions. Due to extensive intercontinental traveling and the anticipated climate change-associated alterations of the soil bacterial flora, there is an increasing concern for inadvertent establishment of novel endemic areas, which may expand the global burden of melioidosis. Rapid diagnosis, isolation and characterization of B. pseudomallei isolates is therefore of utmost importance particularly in non-endemic locations. DATA DESCRIPTION: We report the genome sequences of two novel clinical isolates (MWH2021 and MST2022) of B. pseudomallei identified in distinct acute cases of melioidosis diagnosed in two individuals arriving to Israel from India and Thailand, respectively. The data includes preliminary genetic analysis of the genomes determining their phylogenetic classification in rapport to the genomes of 131 B. pseudomallei strains documented in the NCBI database. Inspection of the genomic data revealed the presence or absence of loci encoding for several documented virulence determinants involved in the molecular pathogenesis of melioidosis. Virulence analysis in murine models of acute or chronic melioidosis established that both strains belong to the highly virulent class of B. pseudomalleii.


Subject(s)
Burkholderia pseudomallei , Genome, Bacterial , Melioidosis , Phylogeny , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/pathogenicity , Melioidosis/microbiology , Melioidosis/epidemiology , Thailand/epidemiology , Humans , Genome, Bacterial/genetics , India , Animals , Israel/epidemiology , Virulence/genetics , Mice , Whole Genome Sequencing
12.
PLoS One ; 18(12): e0294176, 2023.
Article in English | MEDLINE | ID: mdl-38150441

ABSTRACT

SARS-CoV-2 infection elicits robust CD8 T-cell responses, yet the identity of the mechanisms playing dominant roles in initiating the virus-specific CD8 T-cell responses are largely unknown. In the present study, we interrogate the contribution of the cDC1 subset to SARS-CoV-2-specific CD8 T-cell immunity. For this purpose, we used a novel murine line which combines the SARS-CoV-2 susceptible K18-hACE2 transgenic and the Batf3 deficient mice which lack the cDC1 subset. We demonstrate that in the absence of cDC1, viral-specific CD8 T-cell responses were severely impaired both in the draining lymph node as well as in the lungs, during the effector phase of SARS-CoV-2 infection. Furthermore, SARS-CoV-2 specific memory CD8 T-cells in the lungs and spleens were also significantly impacted, whereas humoral responses, as well as CD4 T-cells were not affected. Additionally, we demonstrate that the absence of cDC1 subset, and the consequent impaired CD8 T-cell responses, resulted in significant increase in SARS-CoV-2 viral load in the lungs. The conclusions of the study were further independently corroborated in an additional COVID-19 murine model consisting infection with a mouse-adapted SARS-CoV-2 virus. These results underscore a specific role for Batf3-dependent DC in regulating SARS-CoV-2 specific CD8 T-cell responses and may contribute to future vaccine design and immunization strategies.


Subject(s)
COVID-19 , Animals , Mice , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dendritic Cells , SARS-CoV-2
13.
Vaccines (Basel) ; 11(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36992165

ABSTRACT

In a recent study, we demonstrated that vaccination with the polymeric F1 capsule antigen of the plague pathogen Yersinia pestis led to the rapid induction of a protective humoral immune response via the pivotal activation of innate-like B1b cells. Conversely, the monomeric version of F1 failed to promptly protect vaccinated animals in this model of the bubonic plague. In this study, we examined the ability of F1 to confer the rapid onset of protective immunity in the more challenging mouse model of the pneumonic plague. Vaccination with one dose of F1 adsorbed on aluminum hydroxide elicited effective protection against subsequent lethal intranasal exposure to a fully virulent Y. pestis strain within a week. Interestingly, the addition of the LcrV antigen shortened the time required for achieving such rapid protective immunity to 4-5 days after vaccination. As found previously, the polymeric structure of F1 was essential in affording the accelerated protective response observed by covaccination with LcrV. Finally, in a longevity study, a single vaccination with polymeric F1 induced a higher and more uniform humoral response than a similar vaccination with monomeric F1. However, in this setting, the dominant contribution of LcrV to long-lasting immunity against a lethal pulmonary challenge was reiterated.

14.
BMC Genom Data ; 24(1): 23, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076811

ABSTRACT

OBJECTIVE: As part of a research aiming at presenting an alternative approach for rapid determination of antimicrobial susceptibility by quantification of changes in expression levels of specific marker genes and gene sets, cultures of the virulent bacterial strain Francisella tularensis SchuS4 were grown in the presence of inhibitory/sub-inhibitory concentrations of either ciprofloxacin or doxycycline and their transcriptomic profiles were elucidated using differential expression analysis followed by functional annotation. DATA DESCRIPTION: RNA sequencing was performed to identify differentially expressed genes (DEGs) in response to exposure of F. tularensis SchuS4 to either ciprofloxacin or doxycycline, the antibiotics of choice for Tularemia therapy. Accordingly, RNA samples were collected 2 h post antibiotic exposure and subjected to RNA sequence analysis. Transcriptomic quantification of RNA representing duplicated samples generated highly similar gene expression data. Exposure to sub-inhibitory concentration [0.5 x MIC (minimal inhibitory concentration)] of doxycycline or ciprofloxacin modulated the expression of 237 or 8 genes, respectively, while exposure to an inhibitory concentration (1 x MIC) resulted in the modulation of 583 or 234 genes, respectively. Amongst the genes modulated upon doxycycline exposure upregulation of 31 genes encoding for translation-functions could be distinguished, as well as downregulation of 14 genes encoding for functions involved in DNA transcription and repair. Ciprofloxacin exposure impacted differently the RNA sequence profile of the pathogen, resulting in upregulation of 27 genes encoding mainly DNA replication and repair functions, transmembrane transporters and molecular chaperons. In addition, 15 downregulated genes were involved in translation processes.


Subject(s)
Doxycycline , Francisella tularensis , Doxycycline/pharmacology , Francisella tularensis/genetics , Ciprofloxacin/pharmacology , Transcriptome/genetics , Anti-Bacterial Agents/pharmacology , RNA
15.
Sci Adv ; 9(10): eadg1036, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36888708

ABSTRACT

Messenger RNA (mRNA) lipid nanoparticle (LNP) vaccines have emerged as an effective vaccination strategy. Although currently applied toward viral pathogens, data concerning the platform's effectiveness against bacterial pathogens are limited. Here, we developed an effective mRNA-LNP vaccine against a lethal bacterial pathogen by optimizing mRNA payload guanine and cytosine content and antigen design. We designed a nucleoside-modified mRNA-LNP vaccine based on the bacterial F1 capsule antigen, a major protective component of Yersinia pestis, the etiological agent of plague. Plague is a rapidly deteriorating contagious disease that has killed millions of people during the history of humankind. Now, the disease is treated effectively with antibiotics; however, in the case of a multiple-antibiotic-resistant strain outbreak, alternative countermeasures are required. Our mRNA-LNP vaccine elicited humoral and cellular immunological responses in C57BL/6 mice and conferred rapid, full protection against lethal Y. pestis infection after a single dose. These data open avenues for urgently needed effective antibacterial vaccines.


Subject(s)
Plague Vaccine , Plague , Yersinia pestis , Mice , Animals , Plague/prevention & control , Plague Vaccine/genetics , Bacterial Proteins/genetics , Mice, Inbred C57BL , Yersinia pestis/genetics , Antigens, Bacterial/genetics
16.
Vaccines (Basel) ; 10(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35455362

ABSTRACT

Longevity of the immune response following viral exposure is an essential aspect of SARS-CoV-2 infection. Mild SARS-CoV-2 infection of K18-hACE2 mice was implemented for evaluating the mounting and longevity of a specific memory immune response. We show that the infection of K18-hACE2 mice induced robust humoral and cellular immunity (systemic and local), which persisted for at least six months. Virus-specific T cells and neutralizing antibody titers decreased over time, yet their levels were sufficient to provide sterile immunity against lethal rechallenge six months post-primary infection. The study substantiates the role of naturally induced immunity against SARS-CoV-2 infection for preventing recurring morbidity.

17.
Viruses ; 14(4)2022 03 26.
Article in English | MEDLINE | ID: mdl-35458417

ABSTRACT

Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals-a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains.


Subject(s)
Bacteriophages , Phage Therapy , Plague , Yersinia pestis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Humans , Mice , Plague/drug therapy
18.
Viruses ; 14(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893698

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Humans , Lung/pathology , Melphalan , Mice , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/metabolism , gamma-Globulins
19.
Nat Commun ; 13(1): 2237, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35469023

ABSTRACT

The global spread of SARS-CoV-2 led to major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SARS-CoV-2 can provide insights into the virus pathogenesis, and facilitate the development of novel therapeutics. Here, employing a genome-scale CRISPR screen, we provide a comprehensive data-set of cellular factors that are exploited by wild type SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. We identified several host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination, Heparan sulfate biogenesis and host phosphatidylglycerol biosynthesis. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential proviral gene for all variants inspected. We show that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals shows elevated levels of GATA6, suggesting a role in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and inhibition of viral infectivity. Overall, we show GATA6 may represent a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , GATA6 Transcription Factor/genetics , Humans , Peptidyl-Dipeptidase A/metabolism , Proviruses/genetics , SARS-CoV-2/genetics
20.
Vaccines (Basel) ; 10(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36560529

ABSTRACT

SARS-CoV-2 is evolving with increased transmission, host range, pathogenicity, and virulence. The original and mutant viruses escape host innate (Interferon) immunity and adaptive (Antibody) immunity, emphasizing unmet needs for high-yield, commercial-scale manufacturing to produce inexpensive vaccines/boosters for global/equitable distribution. We developed DYAI-100A85, a SARS-CoV-2 spike receptor binding domain (RBD) subunit antigen vaccine expressed in genetically modified thermophilic filamentous fungus, Thermothelomyces heterothallica C1, and secreted at high levels into fermentation medium. The RBD-C-tag antigen strongly binds ACE2 receptors in vitro. Alhydrogel®'85'-adjuvanted RDB-C-tag-based vaccine candidate (DYAI-100A85) demonstrates strong immunogenicity, and antiviral efficacy, including in vivo protection against lethal intranasal SARS-CoV-2 (D614G) challenge in human ACE2-transgenic mice. No loss of body weight or adverse events occurred. DYAI-100A85 also demonstrates excellent safety profile in repeat-dose GLP toxicity study. In summary, subcutaneous prime/boost DYAI-100A85 inoculation induces high titers of RBD-specific neutralizing antibodies and protection of hACE2-transgenic mice against lethal challenge with SARS-CoV-2. Given its demonstrated safety, efficacy, and low production cost, vaccine candidate DYAI-100 received regulatory approval to initiate a Phase 1 clinical trial to demonstrate its safety and efficacy in humans.

SELECTION OF CITATIONS
SEARCH DETAIL