Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Mater ; 15(5): 549-56, 2016 05.
Article in English | MEDLINE | ID: mdl-26878312

ABSTRACT

Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr1-xTixO3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.

2.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38980128

ABSTRACT

Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process high-speed camera data, at rates exceeding 100 kfps, on in situ field-programmable gate array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real time. Our system utilizes a convolutional neural network (CNN) model, which predicts the n = 1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6 µs and a throughput of up to 120 kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.

3.
Phys Rev Lett ; 109(25): 257602, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23368500

ABSTRACT

We have investigated the contribution of 90° domain walls and thermal expansion mismatch to pyroelectricity in PbZr(0.2)Ti(0.8)O(3) thin films. The first phenomenological models to include extrinsic and secondary contributions to pyroelectricity in polydomain films predict significant extrinsic contributions (arising from the temperature-dependent motion of domain walls) and large secondary contributions (arising from thermal expansion mismatch between the film and the substrate). Phase-sensitive pyroelectric current measurements are applied to model thin films for the first time and reveal a dramatic increase in the pyroelectric coefficient with increasing fraction of in-plane oriented domains and thermal expansion mismatch.

4.
ACS Appl Mater Interfaces ; 5(24): 13235-41, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24299171

ABSTRACT

Pyroelectric materials have been widely used for a range of thermal-related applications including thermal imaging/sensing, waste heat energy conversion, and electron emission. In general, the figures of merit for applications of pyroelectric materials are proportional to the pyroelectric coefficient and inversely proportional to the dielectric permittivity. In this context, we explore single-layer and compositionally graded PbZr1-xTixO3 thin-film heterostructures as a way to independently engineer the pyroelectric coefficient and dielectric permittivity of materials and increase overall performance. Compositional gradients in thin films are found to produce large strain gradients which generate large built-in potentials in the films that can reduce the permittivity while maintaining large pyroelectric response. Routes to enhance the figures of merit of pyroelectric materials by 3-12 times are reported, and comparisons to standard materials are made.

SELECTION OF CITATIONS
SEARCH DETAIL