Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 19(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158457

ABSTRACT

Cardiotonic steroids (CTS) are Na⁺/K⁺-ATPase (NKA) ligands that are elevated in volume-expanded states and associated with cardiac and renal dysfunction in both clinical and experimental settings. We test the hypothesis that the CTS telocinobufagin (TCB) promotes renal dysfunction in a process involving signaling through the NKA α-1 in the following studies. First, we infuse TCB (4 weeks at 0.1 µg/g/day) or a vehicle into mice expressing wild-type (WT) NKA α-1, as well as mice with a genetic reduction (~40%) of NKA α-1 (NKA α-1+/-). Continuous TCB infusion results in increased proteinuria and cystatin C in WT mice which are significantly attenuated in NKA α-1+/- mice (all p < 0.05), despite similar increases in blood pressure. In a series of in vitro experiments, 24-h treatment of HK2 renal proximal tubular cells with TCB results in significant dose-dependent increases in both Collagens 1 and 3 mRNA (2-fold increases at 10 nM, 5-fold increases at 100 nM, p < 0.05). Similar effects are seen in primary human renal mesangial cells. TCB treatment (100 nM) of SYF fibroblasts reconstituted with cSrc results in a 1.5-fold increase in Collagens 1 and 3 mRNA (p < 0.05), as well as increases in both Transforming Growth factor beta (TGFb, 1.5 fold, p < 0.05) and Connective Tissue Growth Factor (CTGF, 2 fold, p < 0.05), while these effects are absent in SYF cells without Src kinase. In a patient study of subjects with chronic kidney disease, TCB is elevated compared to healthy volunteers. These studies suggest that the pro-fibrotic effects of TCB in the kidney are mediated though the NKA-Src kinase signaling pathway and may have relevance to volume-overloaded conditions, such as chronic kidney disease where TCB is elevated.


Subject(s)
Bufanolides/pharmacology , Fibrosis/metabolism , Kidney Diseases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Bufanolides/metabolism , Cell Line , Glycogen Synthase Kinase 3 beta/metabolism , MAP Kinase Signaling System/drug effects , Mice , Ouabain/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects , Swine
2.
Circ Res ; 116(3): 448-55, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25599331

ABSTRACT

RATIONALE: Trimethylamine-N-oxide (TMAO), a gut microbial-dependent metabolite of dietary choline, phosphatidylcholine (lecithin), and l-carnitine, is elevated in chronic kidney diseases (CKD) and associated with coronary artery disease pathogenesis. OBJECTIVE: To both investigate the clinical prognostic value of TMAO in subjects with versus without CKD, and test the hypothesis that TMAO plays a direct contributory role in the development and progression of renal dysfunction. METHODS AND RESULTS: We first examined the relationship between fasting plasma TMAO and all-cause mortality over 5-year follow-up in 521 stable subjects with CKD (estimated glomerular filtration rate, <60 mL/min per 1.73 m(2)). Median TMAO level among CKD subjects was 7.9 µmol/L (interquartile range, 5.2-12.4 µmol/L), which was markedly higher (P<0.001) than in non-CKD subjects (n=3166). Within CKD subjects, higher (fourth versus first quartile) plasma TMAO level was associated with a 2.8-fold increased mortality risk. After adjustments for traditional risk factors, high-sensitivity C-reactive protein, estimated glomerular filtration rate, elevated TMAO levels remained predictive of 5-year mortality risk (hazard ratio, 1.93; 95% confidence interval, 1.13-3.29; P<0.05). TMAO provided significant incremental prognostic value (net reclassification index, 17.26%; P<0.001 and differences in area under receiver operator characteristic curve, 63.26% versus 65.95%; P=0.036). Among non-CKD subjects, elevated TMAO levels portend poorer prognosis within cohorts of high and low cystatin C. In animal models, elevated dietary choline or TMAO directly led to progressive renal tubulointerstitial fibrosis and dysfunction. CONCLUSIONS: Plasma TMAO levels are both elevated in patients with CKD and portend poorer long-term survival. Chronic dietary exposures that increase TMAO directly contributes to progressive renal fibrosis and dysfunction in animal models.


Subject(s)
Methylamines/toxicity , Microbiota , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency/diagnosis , Aged , Aged, 80 and over , Animals , Biomarkers/blood , Case-Control Studies , Female , Humans , Intestines/microbiology , Male , Methylamines/blood , Mice , Mice, Inbred C57BL , Middle Aged , Prognosis , Renal Insufficiency/etiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Risk Factors
3.
Sci Rep ; 10(1): 6632, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313136

ABSTRACT

Lamin A/C (LMNA) gene mutations are a known cause of familial dilated cardiomyopathy, but the precise mechanisms triggering disease progression remain unknown. We hypothesize that analysis of differentially expressed genes (DEGs) throughout the course of Lmna knockout (Lmna-/-)-induced cardiomyopathy may reveal novel Lmna-mediated alterations of signaling pathways leading to dilated cardiomyopathy. Although Lmna was the only DEG down-regulated at 1 week of age, we identified 730 and 1004 DEGs in Lmna-/- mice at 2 weeks and 1 month of age, respectively. At 2 weeks, Lmna-/- mice demonstrated both down- and up-regulation of the key genes involving cell cycle control, mitochondrial dysfunction, and oxidative phosphorylation, as well as down-regulated genes governing DNA damage repair and up-regulated genes involved in oxidative stress response, cell survival, and cardiac hypertrophy. At 1 month, the down-regulated genes included those involved in oxidative phosphorylation, mitochondrial dysfunction, nutrient metabolism, cardiac ß-adrenergic signaling, action potential generation, and cell survival. We also found 96 overlapping DEGs at both ages involved in oxidative phosphorylation, mitochondrial function, and calcium signaling. Impaired oxidative phosphorylation was observed at early disease stage, even before the appearance of disease phenotypes, and worsened with disease progression, suggesting its importance in the pathogenesis and progression of LMNA cardiomyopathy. Reduction of oxidative stress might therefore prevent or delay the development from Lmna mutation to LMNA cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cell Cycle/genetics , DNA Repair , Lamin Type A/genetics , Mitochondria/metabolism , Action Potentials/physiology , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cell Survival , DNA Damage , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Expression Regulation , Humans , Lamin Type A/deficiency , Lamin Type A/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/pathology , Oxidative Phosphorylation , Oxidative Stress , Signal Transduction , Stress, Physiological/genetics
4.
Free Radic Biol Med ; 121: 117-126, 2018 06.
Article in English | MEDLINE | ID: mdl-29729330

ABSTRACT

BACKGROUND: Mitochondrial oxidation is a major source of reactive oxygen species (ROS) and mitochondrial dysfunction plays a central role in development of heart failure (HF). Paraoxonase 2 deficient (PON2-def) mitochondria are impaired in function. In this study, we tested whether PON2-def aggravates HF progression. METHODS AND RESULTS: Using qPCR, immunoblotting and lactonase activity assay, we demonstrate that PON2 activity was significantly decreased in failing hearts despite increased PON2 expression. To determine the cardiac-specific function of PON2, we performed heart transplantations in which PON2-def and wild type (WT) donor hearts were implanted into WT recipient mice. Beating scores of the donor hearts, assessed at 4 weeks post-transplantation, were significantly decreased in PON2-def hearts when compared to WT donor hearts. By using a transverse aortic constriction (TAC) model, we found PON2 deficiency significantly exacerbated left ventricular remodeling and cardiac fibrosis post-TAC. We further demonstrated PON2 deficiency significantly enhanced ROS generation in heart tissues post-TAC. ROS generation was measured through dihydroethidium (DHE) using high-pressure liquid chromatography (HPLC) with a fluorescent detector. By using neonatal cardiomyocytes treated with CoCl2 to mimic hypoxia, we found PON2 deficiency dramatically increased ROS generation in the cardiomyocytes upon CoCl2 treatment. In response to a short CoCl2 exposure, cell viability and succinate dehydrogenase (SDH) activity assessed by MTT assay were significantly diminished in PON2-def cardiomyocytes compared to those in WT cardiomyocytes. PON2-def cardiomyocytes also had lower baseline SDH activity. By using adult mouse cardiomyocytes and mitochondrial ToxGlo assay, we found impaired cellular ATP generation in PON2-def cells compared to that in WT cells, suggesting that PON2 is necessary for proper mitochondrial function. CONCLUSION: Our study suggests a cardioprotective role for PON2 in both experimental and human heart failure, which may be associated with the ability of PON2 to improve mitochondrial function and diminish ROS generation.


Subject(s)
Aryldialkylphosphatase/metabolism , Aryldialkylphosphatase/physiology , Heart Failure/prevention & control , Myocytes, Cardiac/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Heart Failure/etiology , Heart Failure/metabolism , Heart Transplantation , Humans , Male , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL