Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nat Immunol ; 13(12): 1178-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23104095

ABSTRACT

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1ß (IL-1ß) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1ß. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1ß responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1ß responses differently in different cell types.


Subject(s)
Glycogen Storage Disease Type IV/genetics , Hereditary Autoinflammatory Diseases/genetics , Immunologic Deficiency Syndromes/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Bacterial Infections/genetics , Bacterial Infections/immunology , Cell Cycle Proteins/genetics , Cell Line , Fibroblasts/immunology , Fibroblasts/metabolism , Humans , Immunologic Deficiency Syndromes/metabolism , Interleukin-1beta/metabolism , Monocytes/immunology , Monocytes/metabolism , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , Transcription Factors , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Angew Chem Int Ed Engl ; 63(3): e202314587, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37949836

ABSTRACT

Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP-43) is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we provide proof of concept that native state stabilization of TDP-43 is a viable and effective strategy for treating TDP-43 proteinopathies. Firstly, we leveraged the Cryo-EM structures of TDP-43 fibrils to design C-terminal substitutions that disrupt TDP-43 aggregation. Secondly, we showed that these substitutions (S333D/S342D) stabilize monomeric TDP-43 without altering its physiological properties. Thirdly, we demonstrated that binding native oligonucleotide ligands stabilized monomeric TDP-43 and prevented its fibrillization and phase separation in the absence of direct binding to the aggregation-prone C-terminal domain. Fourthly, we showed that the monomeric TDP-43 variant could be induced to aggregate in a controlled manner, which enabled the design and implementation of a high-throughput screening assay to identify native state stabilizers of TDP-43. Altogether, our findings demonstrate that different structural domains in TDP-43 could be exploited and targeted to develop drugs that stabilize the native state of TDP-43 and provide a platform to discover novel drugs to treat TDP-43 proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , TDP-43 Proteinopathies , Humans , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/chemistry
3.
J Allergy Clin Immunol ; 140(6): 1671-1682.e2, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28249776

ABSTRACT

BACKGROUND: Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. OBJECTIVES: We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. METHODS: We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-ß, TNF receptor-associated factor 6, TNF receptor-associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1-interacting protein, and SHANK-associated RH domain-interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1ß. RESULTS: We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1ß-induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1-/- cells). The truncated NEMO interaction with SHANK-associated RH domain-interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. CONCLUSION: We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.


Subject(s)
Fibroblasts/physiology , I-kappa B Kinase/metabolism , Incontinentia Pigmenti/metabolism , Skin/pathology , Ubiquitins/metabolism , Cloning, Molecular , Female , HEK293 Cells , Humans , I-kappa B Kinase/genetics , Incontinentia Pigmenti/genetics , Male , Mutation/genetics , NF-kappa B/metabolism , Pedigree , Protein Binding , Signal Transduction , Transcriptional Activation , Ubiquitination
4.
J Biol Chem ; 288(47): 33722-33737, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24100029

ABSTRACT

Hypomorphic mutations in the X-linked human NEMO gene result in various forms of anhidrotic ectodermal dysplasia with immunodeficiency. NEMO function is mediated by two distal ubiquitin binding domains located in the regulatory C-terminal domain of the protein: the coiled-coil 2-leucine zipper (CC2-LZ) domain and the zinc finger (ZF) domain. Here, we investigated the effect of the D406V mutation found in the NEMO ZF of an ectodermal dysplasia with immunodeficiency patients. This point mutation does not impair the folding of NEMO ZF or mono-ubiquitin binding but is sufficient to alter NEMO function, as NEMO-deficient fibroblasts and Jurkat T lymphocytes reconstituted with full-length D406V NEMO lead to partial and strong defects in NF-κB activation, respectively. To further characterize the ubiquitin binding properties of NEMO ZF, we employed di-ubiquitin (di-Ub) chains composed of several different linkages (Lys-48, Lys-63, and linear (Met-1-linked)). We showed that the pathogenic mutation preferentially impairs the interaction with Lys-63 and Met-1-linked di-Ub, which correlates with its ubiquitin binding defect in vivo. Furthermore, sedimentation velocity and gel filtration showed that NEMO ZF, like other NEMO related-ZFs, binds mono-Ub and di-Ub with distinct stoichiometries, indicating the presence of a new Ub site within the NEMO ZF. Extensive mutagenesis was then performed on NEMO ZF and characterization of mutants allowed the proposal of a structural model of NEMO ZF in interaction with a Lys-63 di-Ub chain.


Subject(s)
Ectodermal Dysplasia/metabolism , I-kappa B Kinase/metabolism , Immunologic Deficiency Syndromes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mutation, Missense , NF-kappa B/metabolism , Ubiquitin/metabolism , Amino Acid Substitution , Animals , Ectodermal Dysplasia/genetics , Humans , I-kappa B Kinase/chemistry , I-kappa B Kinase/genetics , Immunologic Deficiency Syndromes/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Jurkat Cells , Mice , Mice, Mutant Strains , Models, Molecular , NF-kappa B/chemistry , NF-kappa B/genetics , Protein Binding/genetics , Protein Structure, Tertiary , Ubiquitin/genetics , Zinc Fingers
5.
Stem Cell Res ; 76: 103350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387169

ABSTRACT

Human induced Pluripotent Stem Cells (hiPSCs) represent an invaluable source of primary cells to investigate development, establish cell and disease models, provide material for regenerative medicine and allow more physiological high-content screenings. Here, we generated three healthy hiPSC control lines - IPi001-A/B/C - from primary amniotic fluid cells (AFCs), an infrequently used source of cells, which can be readily obtained from amniocentesis for the prenatal diagnosis of numerous genetic disorders. These AFCs were reprogrammed by non-integrative viral transduction. The resulting hiPSCs displayed normal karyotype and expressed classic pluripotency hallmarks.


Subject(s)
Induced Pluripotent Stem Cells , Pregnancy , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Cellular Reprogramming , Cell Differentiation/physiology , Amniotic Fluid/metabolism , Regenerative Medicine
6.
iScience ; 27(6): 110019, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38883823

ABSTRACT

The COVID-19 pandemic highlighted the need for antivirals against emerging coronaviruses (CoV). Inhibiting spike (S) glycoprotein-mediated viral entry is a promising strategy. To identify small molecule inhibitors that block entry downstream of receptor binding, we established a high-throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process to screen nearly 200,000 small molecules. First, we identified hits that inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Counter-screening against pseudoviruses with the vesicular stomatitis virus glycoprotein (VSV-G), yielded sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of these, five compounds, which included the known broad-spectrum inhibitor Nafamostat, were subjected to further validation and tested against pseudoviruses bearing the S glycoprotein of the Alpha, Delta, and Omicron variants as well as bona fide SARS-CoV-2. This rigorous approach revealed an unreported inhibitor and its derivative as potential broad-spectrum antivirals.

7.
NPJ Vaccines ; 9(1): 10, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184681

ABSTRACT

The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.

8.
Blood ; 118(4): 926-35, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21622647

ABSTRACT

Nuclear factor-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase complex, is a critical component of the NF-κB pathway. Hypomorphic mutations in the X-linked human NEMO gene cause various forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). All known X-linked EDA-ID-causing mutations impair NEMO protein expression, folding, or both. We describe here 2 EDA-ID-causing missense mutations that affect the same residue in the CC2-LZ domain (D311N and D311G) that do not impair NEMO production or folding. Structural studies based on pull-down experiments showed a defect in noncovalent interaction with K63-linked and linear polyubiquitin chains for these mutant proteins. Functional studies on the patients' cells showed an impairment of the classic NF-κB signaling pathways after activation of 2 NEMO ubiquitin-binding-dependent receptors, the TNF and IL-1ß receptors, and in the CD40-dependent NF-κB pathway. We report the first human NEMO mutations responsible for X-linked EDA-ID found to affect the polyubiquitin binding of NEMO rather than its expression and folding. These experiments demonstrate that the binding of human NEMO to polyubiquitin is essential for NF-κB activation. They also demonstrate that the normal expression and folding of NEMO do not exclude a pathogenic role for NEMO mutations in patients with EDA-ID.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic/genetics , I-kappa B Kinase/genetics , Immunologic Deficiency Syndromes/genetics , Ubiquitin/metabolism , Blotting, Western , Ectodermal Dysplasia 1, Anhidrotic/metabolism , Enzyme Activation/genetics , Female , Humans , I-kappa B Kinase/metabolism , Immunologic Deficiency Syndromes/metabolism , Male , Mutation, Missense , NF-kappa B/metabolism , Pedigree , Protein Binding , Protein Folding , Signal Transduction/genetics , Young Adult
9.
iScience ; 26(4): 106413, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36968074

ABSTRACT

The landscape of SARS-CoV-2 variants dramatically diversified with the simultaneous appearance of multiple subvariants originating from BA.2, BA.4, and BA.5 Omicron sub-lineages. They harbor a specific set of mutations in the spike that can make them more evasive to therapeutic monoclonal antibodies. In this study, we compared the neutralizing potential of monoclonal antibodies against the Omicron BA.2.75.2, BQ.1, BQ.1.1, and XBB variants, with a pre-Omicron Delta variant as a reference. Sotrovimab retains some activity against BA.2.75.2, BQ.1, and XBB as it did against BA.2/BA.5, but is less active against BQ.1.1. Within the Evusheld/AZD7442 cocktail, Cilgavimab lost all activity against all subvariants studied, resulting in loss of Evusheld activity. Finally, Bebtelovimab, while still active against BA.2.75, also lost all neutralizing activity against BQ.1, BQ.1.1, and XBB variants.

10.
RSC Med Chem ; 14(3): 507-519, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36970153

ABSTRACT

A naturally inspired chemical library of 25 molecules was synthesised guided by 3-D dimensionality and natural product likeness factors to explore a new chemical space. The synthesised chemical library, consisting of fused-bridged dodecahydro-2a,6-epoxyazepino[3,4,5-c,d]indole skeletons, followed lead likeness factors in terms of molecular weight, C-sp3 fraction and Clog P. Screening of the 25 compounds against lung cells infected with SARS-CoV-2 led to the identification of 2 hits. Although the chemical library showed cytotoxicity, the two hits (3b, 9e) showed the highest antiviral activity (EC50 values of 3.7 and 1.4 µM, respectively) with an acceptable cytotoxicity difference. Computational analysis based on docking and molecular dynamics simulations against main protein targets in SARS-CoV-2 (main protease Mpro, nucleocapsid phosphoprotein, non-structural protein nsp10-nsp16 complex and RBD/ACE2 complex) were performed. The computational analysis proposed the possible binding targets to be either Mpro or the nsp10-nsp16 complex. Biological assays were performed to confirm this proposition. A cell-based assay for Mpro protease activity using a reverse-nanoluciferase (Rev-Nluc) reporter confirmed that 3b targets Mpro. These results open the way towards further hit-to-lead optimisations.

11.
J Exp Med ; 203(7): 1745-59, 2006 Jul 10.
Article in English | MEDLINE | ID: mdl-16818673

ABSTRACT

Germline mutations in five autosomal genes involved in interleukin (IL)-12-dependent, interferon (IFN)-gamma-mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)-MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-kappaB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell-dependent IL-12 production, resulting in defective IFN-gamma secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-kappaB/c-Rel-mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-kappaB activators, such as tumor necrosis factor-alpha, IL-1beta, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell- and CD40L-triggered, CD40-, and NEMO/NF-kappaB/c-Rel-mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans.


Subject(s)
CD40 Antigens/physiology , Genes, X-Linked , Genetic Predisposition to Disease , I-kappa B Kinase/genetics , Interleukin-12/biosynthesis , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , X Chromosome , Adolescent , Adult , Animals , Cell Line, Transformed , Cells, Cultured , Child , Child, Preschool , Female , Humans , Infant , L Cells , Male , Mice , Pedigree
12.
Hum Mol Genet ; 19(16): 3138-49, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20529958

ABSTRACT

NF-kappaB Essential MOdulator (NEMO) has been shown to play a critical role in NF-kappaB activation, as the regulatory subunit of IkappaB kinase. Upon cell stimulation, NEMO can be modified through phosphorylation, sumoylation or ubiquitination. In the latter case, not much is known regarding the exact function of this posttranslational modification. One of the E3 ligase responsible for K63-linked NEMO polyubiquitination is TRAF6, which participates in several signaling pathways controlling immunity, osteoclastogenesis, skin development and brain functions. We previously observed a potentially important interaction between NEMO and TRAF6. In this study, we defined in more detail the domains required for this interaction, uncovering a new binding site for TRAF6 located at the amino-terminus of NEMO and recognized by the coiled-coil domain of TRAF6. This site appears to work in concert with the previously identified NEMO ubiquitin-binding domain which binds polyubiquitinated chains, suggesting a dual mode of TRAF6 recognition. We also showed that E57K mutation of NEMO found in a mild form of the genetic disease incontinentia pigmenti, resulted in impaired TRAF6 binding and IL-1beta signaling. In contrast, activation of NF-kappaB by TNF-alpha was not affected. These data demonstrate that NEMO/TRAF6 interaction has physiological relevance and might represent a new target for therapeutic purposes.


Subject(s)
I-kappa B Kinase/genetics , Incontinentia Pigmenti/genetics , Mutation , TNF Receptor-Associated Factor 6/genetics , Amino Acid Substitution , Animals , Binding Sites/genetics , Blotting, Western , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , Immunoprecipitation , Incontinentia Pigmenti/metabolism , Incontinentia Pigmenti/pathology , Interleukin-1beta/pharmacology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Knockout , Models, Molecular , Protein Binding/drug effects , Protein Structure, Tertiary , TNF Receptor-Associated Factor 6/metabolism
13.
Blood ; 116(20): 4240-50, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20671123

ABSTRACT

The FOXO transcription factors are involved in multiple signaling pathways and have tumor-suppressor functions. In acute myeloid leukemia (AML), deregulation of oncogenic kinases, including Akt, extra-signal-regulated kinase, or IκB kinase, is frequently observed, which may potentially inactivate FOXO activity. We therefore investigated the mechanism underlying the regulation of FOXO3a, the only FOXO protein constantly expressed in AML blast cells. We show that in both primary AML samples and in a MV4-11/FOXO3a-GFP cell line, FOXO3a is in a constant inactive state due to its cytoplasmic localization, and that neither PI3K/Akt nor extra-signal-regulated kinase-specific inhibition resulted in its nuclear translocation. In contrast, the anti-Nemo peptide that specifically inhibits IKK activity was found to induce FOXO3a nuclear localization in leukemic cells. Furthermore, an IKK-insensitive FOXO3a protein mutated at S644 translocated into the nucleus and activated the transcription of the Fas-L and p21(Cip1) genes. This, in turn, inhibited leukemic cell proliferation and induced apoptosis. These results thus indicate that IKK activity maintains FOXO3a in the cytoplasm and establishes an important role of FOXO3a inactivation in the proliferation and survival of AML cells. The restoration of FOXO3a activity by interacting with its subcellular distribution may thus represent a new attractive therapeutic strategy for AML.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Forkhead Transcription Factors/metabolism , I-kappa B Kinase/metabolism , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Forkhead Box Protein O3 , Green Fluorescent Proteins/metabolism , Humans , I-kappa B Kinase/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Mutant Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , Recombinant Fusion Proteins/metabolism , Serine/metabolism , Structure-Activity Relationship
14.
Cells ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36497121

ABSTRACT

CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.


Subject(s)
Nuclear Proteins , Ubiquitin , Humans , Ubiquitin/metabolism , Nuclear Proteins/metabolism , Cytokinesis/physiology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Binding
15.
RSC Chem Biol ; 3(4): 456-467, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35441144

ABSTRACT

Epigenetic regulation is a dynamic and reversible process that controls gene expression. Abnormal function results in human diseases such as cancer, thus the enzymes that establish epigenetic marks, such as histone methyltransferases (HMTs), are potentially therapeutic targets. Noteworthily, HMTs form multiprotein complexes that in concert regulate gene expression. To probe epigenetic protein complexes regulation in cells, we developed a reliable chemical biology high-content imaging strategy to screen compound libraries simultaneously on multiple histone marks inside cells. By this approach, we identified that compound 4, a published CARM1 inhibitor, inhibits both histone mark H3R2me2a, regulated also by CARM1, and H3K79me2, regulated only by DOT1L, pointing out a crosstalk between CARM1 and DOT1L. Based on this interaction, we combined compound 4 and DOT1L inhibitor EPZ-5676 resulting in a stronger inhibition of cell proliferation and increase in apoptosis, indicating that our approach identifies possible effective synergistic drug combinations.

16.
J Exp Med ; 219(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35704748

ABSTRACT

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Immunoglobulin A , Immunoglobulin G , Spike Glycoprotein, Coronavirus
17.
Nat Commun ; 12(1): 5553, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548480

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Cell Line , Dipeptides/pharmacology , Humans , Mutation , Myosin-Light-Chain Kinase/antagonists & inhibitors , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Proteolysis , Proteomics , RNA, Small Interfering/pharmacology , SARS-CoV-2/genetics , Viral Proteases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/metabolism , COVID-19 Drug Treatment
18.
Cell Rep Methods ; 1(5): 100068, 2021 09 27.
Article in English | MEDLINE | ID: mdl-35474672

ABSTRACT

Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.


Subject(s)
Muscle Fibers, Skeletal , RNA , RNA/genetics , In Situ Hybridization, Fluorescence/methods , RNA, Messenger/genetics , Muscle Fibers, Skeletal/metabolism , Protein Transport
19.
Sci Rep ; 9(1): 15978, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685855

ABSTRACT

Lipoprotein modification is an essential process in Gram-negative bacteria. The action of three integral membrane proteins that catalyze the transfer of fatty acids derived from membrane phospholipids or cleave the signal peptide of the lipoprotein substrate result in the formation of mature triacylated proteins. Inactivation of the enzymes leads to mis-localization of immature lipoproteins and consequently cell death. Biochemical studies and the development of in vitro assays are challenging due to the fact that the enzymes and substrates are all membrane-embedded proteins difficult to overproduce and purify. Here we describe a sensitive fluorescence-based assay to monitor bacterial apolipoprotein N-acyltransferase activity.


Subject(s)
Acyltransferases/metabolism , Enzyme Assays , Fluorescence , Membrane Proteins/metabolism , Acyltransferases/chemistry , Bacterial Proteins/metabolism , Click Chemistry , Enzyme Activation , Enzyme Assays/methods , High-Throughput Screening Assays , Membrane Proteins/chemistry , Oligopeptides/metabolism , Substrate Specificity
20.
iScience ; 20: 292-309, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31605944

ABSTRACT

CEP55 regulates the final critical step of cell division termed cytokinetic abscission. We report herein that CEP55 contains two NEMO-like ubiquitin-binding domains (UBDs), NOA and ZF, which regulate its function in a different manner. In vitro studies of isolated domains showed that NOA adopts a dimeric coiled-coil structure, whereas ZF is based on a UBZ scaffold. Strikingly, CEP55 knocked-down HeLa cells reconstituted with the full-length CEP55 ubiquitin-binding defective mutants, containing structure-guided mutations either in NOACEP55 or ZFCEP55 domains, display severe abscission defects. In addition, the ZFCEP55 can be functionally replaced by some ZF-based UBDs belonging to the UBZ family, indicating that the essential function of ZFCEP55 is to act as ubiquitin receptor. Our work reveals an unexpected role of CEP55 in non-degradative ubiquitin signaling during cytokinetic abscission and provides a molecular basis as to how CEP55 mutations can lead to neurological disorders such as the MARCH syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL