Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
FASEB J ; 33(1): 430-440, 2019 01.
Article in English | MEDLINE | ID: mdl-30020828

ABSTRACT

Fat storage-inducing transmembrane protein 2 (FIT2) aids in partitioning of cellular triacylglycerol into lipid droplets. A genome-wide association study reported FITM2-R3H domain containing like-HNF4A locus to be associated with type 2 diabetes (T2DM) in East Asian populations. Mice with adipose tissue (AT)-specific FIT2 knockout exhibited lipodystrophic features, with reduced AT mass, insulin resistance, and greater inflammation in AT when fed a high-fat diet. The role of FIT2 in regulating human adipocyte function is not known. Here, we found FIT2 protein abundance is lower in subcutaneous and omental AT obtained from patients with T2DM compared with nondiabetic control subjects. Partial loss of FIT2 protein in primary human adipocytes attenuated their lipid storage capacity and induced insulin resistance. After palmitate treatment, triacylglycerol accumulation, insulin-induced Akt (Ser-473) phosphorylation, and insulin-stimulated glucose uptake were significantly reduced in FIT2 knockdown adipocytes compared with control cells. Gene expression of proinflammatory cytokines IL-18 and IL-6 and phosphorylation of the endoplasmic reticulum stress marker inositol-requiring enzyme 1α were greater in FIT2 knockdown adipocytes than in control cells. Our results show for the first time that FIT2 is associated with T2DM in humans and plays an integral role in maintaining metabolically healthy AT function.-Agrawal, M., Yeo, C. R., Shabbir, A., Chhay, V., Silver, D. L., Magkos, F., Vidal-Puig, A., Toh, S.-A. Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes.


Subject(s)
Adipocytes/pathology , Diabetes Mellitus, Type 2/pathology , Insulin Resistance , Membrane Proteins/metabolism , Triglycerides/metabolism , Adipocytes/metabolism , Adult , Case-Control Studies , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Middle Aged , Phosphorylation
2.
Curr Diab Rep ; 17(10): 87, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28812211

ABSTRACT

PURPOSE OF REVIEW: Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. RECENT FINDINGS: Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.


Subject(s)
Immune System/pathology , Obesity/immunology , Adipose Tissue/immunology , Adipose Tissue/pathology , Animals , Ethnicity , Humans , Racial Groups , Sex Characteristics
3.
Nutrients ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794641

ABSTRACT

Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis. Shifts in the nutrient milieu could influence inflammation through changes in T-cell metabolism. We aimed to determine whether changes in glucose utilization alter cytokine profiles in T2D. Peripheral blood mononuclear cells (PBMCs), CD4+ T-cells, and CD4+CD25- T-effector (Teff) cells were isolated from age-matched humans classified by glycemic control and BMI. Cytokines secreted by CD3/CD28-stimulated PBMCs and Teff were measured in supernatants with multiplex cytokine assays and a FLEXMAP-3D. Metabolic activity of stimulated CD4+ T-cells was measured by a Seahorse XFe96 analyzer. In this study, we demonstrated that T-cell stimulated PBMCs from non-fasted people with T2D produced higher amounts of cytokines compared to fasting. Although dysglycemia characterizes T2D, cytokine production by PBMCs or CD4+ T-cells in T2D was unaltered by hyperglycemic media. Moreover, pharmacological suppression of mitochondrial glucose oxidation did not change T-cell metabolism in T2D, yet enhanced cytokine competency. In conclusion, fasting and glucose metabolism differentially impact peripheral inflammation in human T2D, suggesting that glucose, along with fatty acid metabolites per our previous work, partner to regulate metaflammation. These data expose a major disconnect in the use of glycemic control drugs to target T2D-associated metaflammation.


Subject(s)
CD4-Positive T-Lymphocytes , Cytokines , Diabetes Mellitus, Type 2 , Fasting , Inflammation , Leukocytes, Mononuclear , Humans , Diabetes Mellitus, Type 2/metabolism , Inflammation/metabolism , Cytokines/metabolism , Male , Female , Middle Aged , Leukocytes, Mononuclear/metabolism , CD4-Positive T-Lymphocytes/metabolism , Blood Glucose/metabolism , Glucose/metabolism , Adult , Aged
4.
Cell Rep ; 43(4): 114020, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554280

ABSTRACT

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral TĀ cell dynamics. TĀ cell responses to immunotherapy largely rely on peripheral TĀ cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control TĀ cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic TĀ cell dynamics.


Subject(s)
Autophagy , Immune Checkpoint Inhibitors , Lymph Nodes , Sphingosine/analogs & derivatives , T-Lymphocytes , Autophagy/drug effects , Animals , Lymph Nodes/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Endothelial Cells/metabolism , Sphingosine/pharmacology , Sphingosine/metabolism , Humans , Lysophospholipids/metabolism , Immunotherapy/methods , Cell Movement
5.
Methods Mol Biol ; 2572: 45-54, 2023.
Article in English | MEDLINE | ID: mdl-36161406

ABSTRACT

Polychromatic flowcytometry is increasingly used for simultaneously analyzing multiple intracellular and cell-surface proteins on a given cell population. Here we describe a flowcytometry-based method to analyze various proteins on the surface of endothelial cells (which comprise of less than 0.5% of the tumor microenvironment) and concurrently sort the live endothelial cells for the downstream applications such as gene expression by conventional quantitative PCR or by single-cell RNA sequencing.


Subject(s)
Endothelial Cells , Neoplasms , Cell Count , Endothelial Cells/pathology , Flow Cytometry/methods , Humans , Membrane Proteins , Neoplasms/pathology , Tumor Microenvironment
6.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38009521

ABSTRACT

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Subject(s)
Melanoma , Humans , Mice , Animals , Melanoma/pathology , Endothelial Cells/metabolism , CD8-Positive T-Lymphocytes , NF-kappa B/metabolism , Autophagy , Immunotherapy , Tumor Microenvironment
7.
Obesity (Silver Spring) ; 30(10): 1983-1994, 2022 10.
Article in English | MEDLINE | ID: mdl-36069294

ABSTRACT

OBJECTIVE: Myeloid cells dominate metabolic disease-associated inflammation (metaflammation) in mouse obesity, but the contributions of myeloid cells to the peripheral inflammation that fuels sequelae of human obesity are untested. This study used unbiased approaches to rank contributions of myeloid and T cells to peripheral inflammation in people with obesity across the spectrum of metabolic health. METHODS: Peripheral blood mononuclear cells (PBMCs) from people with obesity with or without prediabetes or type 2 diabetes were stimulated with T cell-targeting CD3/CD28 or myeloid-targeting lipopolysaccharide for 20 to 72 hours to assess cytokine production using Bio-Plex. Bioinformatic modeling ranked cytokines with respect to their predictive power for metabolic health. Intracellular tumor necrosis factor α was quantitated as a classical indicator of metaflammation. RESULTS: Cytokines increased over 72 hours following T cell-, but not myeloid-, targeted stimulation to indicate that acute myeloid inflammation may shift to T cell inflammation over time. T cells contributed more tumor necrosis factor α to peripheral inflammation regardless of metabolic status. Bioinformatic combination of cytokines from all cohorts, stimuli, and time points indicated that T cell-targeted stimulation was most important for differentiating inflammation in diabetes, consistent with previous identification of a mixed T helper type 1/T helper type 17 cytokine profile in diabetes. CONCLUSIONS: T cells dominate peripheral inflammation in obesity; therefore, targeting T cells may be an effective approach for prevention/management of metaflammation.


Subject(s)
Diabetes Mellitus, Type 2 , T-Lymphocytes , Animals , CD28 Antigens , Cross-Sectional Studies , Cytokines/metabolism , Diabetes Mellitus, Type 2/complications , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Mice , Obesity/complications , Obesity/metabolism , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Nat Commun ; 13(1): 2760, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589749

ABSTRACT

Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.


Subject(s)
Lymphangiogenesis , Lymphatic Vessels , Animals , Autophagy/genetics , Endothelial Cells/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lymphangiogenesis/genetics , Lymphatic Vessels/metabolism , Mice , Mitochondria , Transcription Factors/metabolism
9.
FEBS Lett ; 595(11): 1497-1511, 2021 06.
Article in English | MEDLINE | ID: mdl-33837545

ABSTRACT

Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.


Subject(s)
Autophagy-Related Proteins/genetics , Autophagy/genetics , Endothelial Cells/immunology , Hypoxia/genetics , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Animals , Autophagy/immunology , Autophagy-Related Proteins/immunology , Blood Vessels/metabolism , Blood Vessels/pathology , Cytokines/genetics , Cytokines/immunology , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic , Homeostasis/genetics , Homeostasis/physiology , Humans , Hypoxia/immunology , Hypoxia/pathology , Immunologic Surveillance/genetics , Lysosomes/metabolism , Neoplasms/blood supply , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Signal Transduction , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
10.
Cell Metab ; 32(1): 44-55.e6, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32402267

ABSTRACT

Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ TĀ cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. TĀ cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in TĀ cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.


Subject(s)
Aging/drug effects , Autophagy/drug effects , Hypoglycemic Agents/pharmacology , Inflammation/metabolism , Metformin/pharmacology , Mitochondria/drug effects , Adult , Aging/metabolism , Humans , Middle Aged , Mitochondria/metabolism
11.
Biomolecules ; 9(2)2019 02 25.
Article in English | MEDLINE | ID: mdl-30823587

ABSTRACT

Circulating fatty acids (FAs) increase with obesity and can drive mitochondrial damage and inflammation. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial protein that positively regulates nicotinamide adenine dinucleotide phosphate (NADPH), a key mediator of energy transduction and redox homeostasis. The role that NNT-regulated bioenergetics play in the inflammatory response of immune cells in obesity is untested. Our objective was to determine how free fatty acids (FFAs) regulate inflammation through impacts on mitochondria and redox homeostasis of peripheral blood mononuclear cells (PBMCs). PBMCs from lean subjects were activated with a T cell-specific stimulus in the presence or absence of generally pro-inflammatory palmitate and/or non-inflammatory oleate. Palmitate decreased immune cell expression of NNT, NADPH, and anti-oxidant glutathione, but increased reactive oxygen and proinflammatory Th17 cytokines. Oleate had no effect on these outcomes. Genetic inhibition of NNT recapitulated the effects of palmitate. PBMCs from obese (BMI >30) compared to lean subjects had lower NNT and glutathione expression, and higher Th17 cytokine expression, none of which were changed by exogenous palmitate. Our data identify NNT as a palmitate-regulated rheostat of redox balance that regulates immune cell function in obesity and suggest that dietary or therapeutic strategies aimed at increasing NNT expression may restore redox balance to ameliorate obesity-associated inflammation.


Subject(s)
Fatty Acids/pharmacology , Inflammation/drug therapy , NADP Transhydrogenases/antagonists & inhibitors , T-Lymphocytes/drug effects , Adult , Female , Humans , Inflammation/metabolism , Male , Middle Aged , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , T-Lymphocytes/metabolism
12.
Cell Metab ; 30(3): 447-461.e5, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31378464

ABSTRACT

Mechanisms that regulate metabolites and downstream energy generation are key determinants of TĀ cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, ƟĀ oxidation blockade or CACT knockdown in TĀ cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised Ɵ oxidation to promote disease-predictive inflammation in human T2D.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lymphocyte Activation/immunology , Th17 Cells/immunology , Adult , Aged , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/genetics , Cells, Cultured , Cross-Sectional Studies , Cytokines/metabolism , Female , Gene Knockdown Techniques , Glycolysis/genetics , Humans , Inflammation/metabolism , Male , Membrane Transport Proteins/genetics , Middle Aged , Obesity/metabolism , Oxidation-Reduction , Transfection , Young Adult
13.
Sci Rep ; 7(1): 4031, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28642596

ABSTRACT

The Simpson Golabi Behmel Syndrome (SGBS) pre-adipocyte cell strain is widely considered to be a representative in vitro model of human white pre-adipocytes. A recent study suggested that SGBS adipocytes exhibit an unexpected transient brown phenotype. Here, we comprehensively examined key differences between SGBS adipocytes and primary human white subcutaneous (PHWSC) adipocytes. RNA-Seq analysis revealed that extracellular matrix (ECM)-receptor interaction and metabolic pathways were the top two KEGG pathways significantly enriched in SGBS adipocytes, which included positively enriched mitochondrial respiration and oxidation pathways. Compared to PHWSC adipocytes, SGBS adipocytes showed not only greater induction of adipogenic gene expression during differentiation but also increased levels of UCP1 mRNA and protein expression. Functionally, SGBS adipocytes displayed higher ISO-induced basal leak respiration and overall oxygen consumption rate, along with increased triglyceride accumulation and insulin-stimulated glucose uptake. In conclusion, we confirmed that SGBS adipocytes, which are considered of white adipose tissue origin can shift towards a brown/beige adipocyte phenotype. These differences indicate SGBS cells may help to identify mechanisms leading to browning, and inform our understanding for the use of SGBS vis-Ć -vis primary human subcutaneous adipocytes as a human white adipocyte model, guiding the selection of appropriate cell models in future metabolic research.


Subject(s)
Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Adipocytes, White/cytology , Adipocytes, White/metabolism , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation , Glucose/metabolism , Humans , Insulin/metabolism , Lipid Metabolism , Metabolic Networks and Pathways , Organ Specificity , Subcutaneous Fat/cytology , Transcriptome
14.
Diabetes ; 65(5): 1164-78, 2016 05.
Article in English | MEDLINE | ID: mdl-26936961

ABSTRACT

Increased visceral fat, rather than subcutaneous fat, during the onset of obesity is associated with a higher risk of developing metabolic diseases. The inherent adipogenic properties of human adipose-derived stem cells (ASCs) from visceral depots are compromised compared with those of ASCs from subcutaneous depots, but little is known about the underlying mechanisms. Using ontological analysis of global gene expression studies, we demonstrate that many genes involved in retinoic acid (RA) synthesis or regulated by RA are differentially expressed in human tissues and ASCs from subcutaneous and visceral fat. The endogenous level of RA is higher in visceral ASCs; this is associated with upregulation of the RA synthesis gene through the visceral-specific developmental factor WT1. Excessive RA-mediated activity impedes the adipogenic capability of ASCs at early but not late stages of adipogenesis, which can be reversed by antagonism of RA receptors or knockdown of WT1. Our results reveal the developmental origin of adipocytic properties and the pathophysiological contributions of visceral fat depots.


Subject(s)
Adipogenesis , Down-Regulation , Gene Expression Regulation, Developmental , Intra-Abdominal Fat/metabolism , Receptors, Retinoic Acid/agonists , Signal Transduction , Tretinoin/metabolism , Active Transport, Cell Nucleus/drug effects , Adipogenesis/drug effects , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Adult Stem Cells/pathology , Bariatric Surgery , Benzoates/pharmacology , Cells, Cultured , Down-Regulation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Gene Ontology , Humans , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/pathology , Middle Aged , Naphthalenes/pharmacology , Obesity, Morbid/metabolism , Obesity, Morbid/pathology , Obesity, Morbid/surgery , RNA Interference , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/metabolism , Response Elements/drug effects , Signal Transduction/drug effects , Stilbenes/pharmacology , Subcutaneous Fat, Abdominal/cytology , Subcutaneous Fat, Abdominal/drug effects , Subcutaneous Fat, Abdominal/metabolism , Subcutaneous Fat, Abdominal/pathology , Up-Regulation/drug effects , WT1 Proteins/antagonists & inhibitors , WT1 Proteins/genetics , WT1 Proteins/metabolism
16.
Exp Diabetes Res ; 2012: 356487, 2012.
Article in English | MEDLINE | ID: mdl-22550476

ABSTRACT

Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a) to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b) to investigate whether 4-Phenyl butyric acid (PBA), a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP) expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Monocytes/drug effects , Phenylbutyrates/pharmacology , Caspase 3/metabolism , Cell Line , Cells, Cultured , DNA Damage/drug effects , Humans , Monocytes/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL