Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1082622, 2023.
Article in English | MEDLINE | ID: mdl-37033474

ABSTRACT

Introduction: Refractile bodies (RB) are large membrane-less organelles (MLO) of unknown function found as a prominent mismatched pair within the sporozoite stages of all species of Eimeria, parasitic coccidian protozoa. Methods: High resolution imaging methods including time-lapse live confocal microscopy and serial block face-scanning electron microscopy (SBF-SEM) were used to investigate the morphology of RB and other intracellular organelles before and after sporozoite invasion of host cells. Results: Live cell imaging of MDBK cells infected with E. tenella sporozoites confirmed previous reports that RB reduce from two to one post-infection and showed that reduction in RB number occurs via merger of the anterior RB with the posterior RB, a process that lasts 20-40 seconds and takes place between 2- and 5-hours post-infection. Ultrastructural studies using SBF-SEM on whole individual sporozoites, both pre- and post-host cell invasion, confirmed the live cell imaging observations and showed also that changes to the overall sporozoite cell shape accompanied RB merger. Furthermore, the single RB post-merger was found to be larger in volume than the two RB pre-merger. Actin inhibitors were used to investigate a potential role for actin in RB merger, Cytochalasin D significantly inhibited both RB merger and the accompanying changes in sporozoite cell shape. Discussion: MLOs in eukaryotic organisms are characterised by their lack of a membrane and ability to undergo liquid-liquid phase separation (LLPS) and fusion, usually in an actin-mediated fashion. Based on the changes in sporozoite cell shape observed at the time of RB merger together with a potential role for actin in this process, we propose that RB are classed as an MLO and recognised as one of the largest MLOs so far characterised.


Subject(s)
Chickens , Coccidiosis , Eimeria tenella , Organelles , Poultry Diseases , Sporozoites , Animals , Actins/metabolism , Chickens/metabolism , Chickens/parasitology , Eimeria tenella/metabolism , Eimeria tenella/physiology , Organelles/metabolism , Organelles/physiology , Sporozoites/metabolism , Sporozoites/physiology , Coccidiosis/metabolism , Coccidiosis/parasitology , Coccidiosis/physiopathology , Poultry Diseases/metabolism , Poultry Diseases/parasitology , Poultry Diseases/physiopathology
2.
PLoS Negl Trop Dis ; 15(1): e0009034, 2021 01.
Article in English | MEDLINE | ID: mdl-33476330

ABSTRACT

Sand flies are the insects responsible for transmitting Leishmania parasites, the causative agents of leishmaniasis in humans. However, the effects of sand fly breeding sites on their biology and ecology remain poorly understood. Herein, we studied how larval nutrition associated with putative breeding sites of the sand fly Lutzomyia longipalpis affects their oviposition, development, microbiome, and susceptibility to Leishmania by rearing L. longipalpis on substrates collected from an endemic area for leishmaniasis in Brazil. The results showed that female L. longipalpis select the oviposition site based on its potential to promote larval maturation and while composting cashew leaf litter hindered the development, larvae reared on chicken feces developed rapidly. Typical gut microbial profiles were found in larvae reared upon cashew leaf litter. Adult females from larvae reared on substrate collected in chicken coops were infected with Leishmania infantum, indicating that they were highly susceptible to the parasite. In conclusion, the larval breeding sites can exert an important role in the epidemiology of leishmaniasis.


Subject(s)
Insect Vectors/parasitology , Larva/microbiology , Larva/parasitology , Leishmania/physiology , Psychodidae/microbiology , Psychodidae/parasitology , Animals , Brazil , Chickens , Ecology , Feces/microbiology , Feces/parasitology , Female , Gastrointestinal Microbiome , Leishmania infantum , Leishmaniasis , Oviposition
3.
Front Cell Infect Microbiol ; 10: 579833, 2020.
Article in English | MEDLINE | ID: mdl-33154954

ABSTRACT

In vitro development of the complete life cycle of Eimeria species has been achieved in primary cultures of avian epithelial cells with low efficiency. The use of immortalized cell lines simplifies procedures but only allows partial development through one round of parasite invasion and intracellular replication. We have assessed the suitability of Madin-Darby Bovine Kidney (MDBK) cells to support qualitative and quantitative studies on sporozoite invasion and intracellular development of Eimeria tenella. Analysis of parasite ultrastructure by transmission electron microscopy and serial block face-scanning electron microscopy proved the suitability of the system to generate good quality schizonts and first-generation merozoites. Parasite protein expression profiles elucidated by mass spectrometry corroborated previous findings occurring during the development of the parasite such as the presence of alternative types of surface antigen at different stages and increased abundance of proteins from secretory organelles during invasion and endogenous development. Quantitative PCR (qPCR) allowed the tracking of development by detecting DNA division, whereas reverse transcription qPCR of sporozoite- and merozoite-specific genes could detect early changes before cell division and after merozoite formation, respectively. These results correlated with the analysis of development using ImageJ semi-automated image analysis of fluorescent parasites, demonstrating the suitability and reproducibility of the MDBK culture system. This systems also allowed the evaluation of the effects on invasion and development when sporozoites were pre-incubated with anticoccidial drugs, showing similar effects to those reported before. We have described through this study a series of methods and assays for the further application of this in vitro culture model to more complex studies of Eimeria including basic research on parasite cell biology and host-parasite interactions and for screening anticoccidial drugs.


Subject(s)
Eimeria tenella , Eimeria , Animals , Cattle , Cell Culture Techniques , Chickens , Reproducibility of Results , Sporozoites
4.
Front Vet Sci ; 7: 420, 2020.
Article in English | MEDLINE | ID: mdl-32851011

ABSTRACT

This study investigated the in vitro effects of Greek oregano and garlic essential oils on inhibition of Eimeria parasites and their in vivo effects on production performance, intestinal bacteria counts, and oocyst output. An inhibition assay was performed in vitro using Eimeria tenella Wisconsin strain sporozoites and Madin-Darby bovine kidney (MDBK) cells. Intracellular sporozoite invasion was quantified by detection of E. tenella DNA using qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the oregano essential oil at the concentration of 100 µg/ml by 83 or 93% after 2 or 24 h, respectively. Garlic essential oil reached a maximum inhibition of 70% after 24 h with the 50 µg/ml concentration. Normal morphology was observed in MDBK cells exposed to concentrations of 100 µl/ml of garlic or oregano for over 24 h. In the in vivo trial, 180 male broiler chicks (45.3 ± 0.7 g) were allocated into two treatments (6 pens of 15 chicks per treatment). Control treatment was fed commercial diets without antibiotics or anticoccidials. The ORE-GAR treatment was fed the same control diets, further supplemented with a premix (1 g/kg feed) containing the oregano (50 g/kg premix) and garlic (5 g/kg premix) essential oils. At day 37, all birds were slaughtered under commercial conditions, and intestinal samples were collected. ORE-GAR treatment had improved final body weight (1833.9 vs. 1.685.9 g; p < 0.01), improved feed conversion ratio (1.489 vs. 1.569; p < 0.01), and reduced fecal oocyst excretion (day 28: 3.672 vs. 3.989 log oocysts/g, p < 0.01; day 37: 3.475 vs. 4.007 log oocysts/g, p < 0.001). In the caecal digesta, ORE-GAR treatment had lower total anaerobe counts (8.216 vs. 8.824 CFU/g; p < 0.01), whereas in the jejunum digesta the ORE-GAR treatment had higher counts of E. coli (5.030 vs. 3.530 CFU/g; p = 0.01) and Enterobacteriaceae (5.341 vs. 3.829 CFU/g; p < 0.01), and lower counts of Clostridium perfringens (2.555 vs. 2.882 CFU/g; p < 0.01). In conclusion, the combined supplementation of oregano and garlic essential oils had a potent anticoccidial effect in vitro and a growth-promoting effect in broilers reared in the absence of anticoccidial drugs.

5.
Parasit Vectors ; 7: 329, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25051919

ABSTRACT

BACKGROUND: Phlebotomine sand flies transmit the haemoflagellate Leishmania, the causative agent of human leishmaniasis. The Leishmania promastigotes are confined to the gut lumen and are exposed to the gut microbiota within female sand flies. Here we study the colonisation resistance of yeast and bacteria in preventing the establishment of a Leishmania population in sand flies and the ability of Leishmania to provide colonisation resistance towards the insect bacterial pathogen Serratia marcescens that is also pathogenic towards Leishmania. METHODS: We isolated microorganisms from wild-caught and laboratory-reared female Lutzomyia longipalpis, identified as Pseudozyma sp. Asaia sp. and Ochrobactrum intermedium. We fed the females with a sugar meal containing the microorganisms and then subsequently fed them with a bloodmeal containing Leishmania mexicana and recorded the development of the Leishmania population. Further experiments examined the effect of first colonising the sand fly gut with L. mexicana followed by feeding with, Serratia marcescens, an insect bacterial pathogen. The mortality of the flies due to S. marcescens was recorded in the presence and absence of Leishmania. RESULTS: There was a reduction in the number of flies harbouring a Leishmania population that had been pre-fed with Pseudozyma sp. and Asaia sp. or O. intermedium. Experiments in which L. mexicana colonised the sand fly gut prior to being fed an insect bacterial pathogen, Serratia marcescens, showed that the survival of flies with a Leishmania infection was significantly higher compared to flies without Leishmania infection. CONCLUSIONS: The yeast and bacterial colonisation experiments show that the presence of sand fly gut microorganisms reduce the potential for Leishmania to establish within the sand fly vector. Sand flies infected with Leishmania were able to survive an attack by the bacterial pathogen that would have killed the insect and we concluded that Leishmania may benefit its insect host whilst increasing the potential to establish itself in the sand fly vector. We suggest that the increased ability of the sand fly to withstand a bacterial entomopathogen, due to the presence of the Leishmania, may provide an evolutionary pressure for the maintenance of the Leishmania-vector association.


Subject(s)
Leishmania/physiology , Psychodidae/microbiology , Psychodidae/parasitology , Serratia/physiology , Animals , Female , Host-Pathogen Interactions
SELECTION OF CITATIONS
SEARCH DETAIL