Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Article in English | MEDLINE | ID: mdl-37747931

ABSTRACT

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Subject(s)
Neurons , Prion Diseases , Prions , Sulfotransferases , Animals , Mice , Heparitin Sulfate/metabolism , Mice, Knockout , Neurons/enzymology , Prion Diseases/metabolism , Prion Proteins/genetics , Prions/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
2.
J Neurosci ; 43(21): 3970-3984, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37019623

ABSTRACT

Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.


Subject(s)
Neurodegenerative Diseases , Prion Diseases , Prions , Male , Female , Mice , Humans , Animals , Prions/metabolism , Prion Proteins/metabolism , Receptors, AMPA/metabolism , Neurons/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Neurodegenerative Diseases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism
3.
Neurobiol Dis ; 172: 105834, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35905927

ABSTRACT

Synapse dysfunction and loss are central features of neurodegenerative diseases, caused in part by the accumulation of protein oligomers. Amyloid-ß, tau, prion, and α-synuclein oligomers bind to the cellular prion protein (PrPC), resulting in the activation of macromolecular complexes and signaling at the post-synapse, yet the early signaling events are unclear. Here we sought to determine the early transcript and protein alterations in the hippocampus during the pre-clinical stages of prion disease. We used a transcriptomic approach focused on the early-stage, prion-infected hippocampus of male wild-type mice, and identify immediate early genes, including the synaptic activity response gene, Arc/Arg3.1, as significantly upregulated. In a longitudinal study of male, prion-infected mice, Arc/Arg-3.1 protein was increased early (40% of the incubation period), and by mid-disease (pre-clinical), phosphorylated AMPA receptors (pGluA1-S845) were increased and metabotropic glutamate receptors (mGluR5 dimers) were markedly reduced in the hippocampus. Notably, sporadic Creutzfeldt-Jakob disease (sCJD) post-mortem cortical samples also showed low levels of mGluR5 dimers. Together, these findings suggest that prions trigger an early Arc response, followed by an increase in phosphorylated GluA1 and a reduction in mGluR5 receptors.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Amyloid beta-Peptides/metabolism , Animals , Creutzfeldt-Jakob Syndrome/metabolism , Hippocampus/metabolism , Longitudinal Studies , Male , Mice , Prions/metabolism
4.
Proc Natl Acad Sci U S A ; 116(52): 26853-26862, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843908

ABSTRACT

Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.

5.
J Infect Dis ; 223(6): 1103-1112, 2021 03 29.
Article in English | MEDLINE | ID: mdl-31919511

ABSTRACT

Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]-Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.


Subject(s)
Encephalopathy, Bovine Spongiform , Prions , Scrapie , Animals , Brain/metabolism , Cattle , Encephalopathy, Bovine Spongiform/transmission , Mice , Mice, Transgenic , PrPSc Proteins , Prion Proteins , Prions/metabolism , Swine
6.
Neuropathol Appl Neurobiol ; 47(4): 506-518, 2021 06.
Article in English | MEDLINE | ID: mdl-33253417

ABSTRACT

AIMS: The amino acid sequence of prion protein (PrP) is a key determinant in the transmissibility of prion diseases. While PrP sequence is highly conserved among mammalian species, minor changes in the PrP amino acid sequence may confer alterations in the transmissibility of prion diseases. Classical bovine spongiform encephalopathy (C-BSE) is the only zoonotic prion strain reported to date causing variant Creutzfeldt-Jacob disease (vCJD) in humans, although experimental transmission points to atypical L-BSE and some classical scrapie isolates as also zoonotic. The precise molecular elements in the human PrP sequence that limit the transmissibility of prion strains such as sheep/goat scrapie or cervid chronic wasting disease (CWD) are not well known. METHODS: The transmissibility of a panel of diverse prions from different species was compared in transgenic mice expressing either wild-type human PrPC (MDE-HuTg340) or a mutated human PrPC harbouring Val166 -Gln168 amino acid changes (VDQ-HuTg372) in the ß2-α2 loop instead of Met166 -Glu168 wild-type variants. RESULTS: VDQ-HuTg372 mice were more susceptible to prions than MDE-HuTg340 mice in a strain-dependent manner. CONCLUSIONS: Met166 -Glu168 amino acid residues present in wild-type human PrPC are molecular determinants that limit the propagation of most prion strains assayed in the human PrP context.


Subject(s)
Amino Acids/chemistry , Prion Diseases/physiopathology , Prion Proteins/chemistry , Animals , Evolution, Molecular , Humans , Mice, Transgenic
7.
Vet Res ; 52(1): 57, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858518

ABSTRACT

The diversity of goat scrapie strains in Europe has recently been studied using bioassays in a wide collection of rodent models, resulting in the classification of classical scrapie into four different categories. However, the sole use of the first passage does not lead to isolate adaptation and identification of the strains involved and might therefore lead to misclassification of some scrapie isolates. Therefore, this work reports the complete transmission study of a wide collection of goat transmissible spongiform encephalopathy (TSE) isolates by intracranial inoculation in two transgenic mouse lines overexpressing either small ruminant (TgGoat-ARQ) or bovine (TgBov) PrPC. To compare scrapie strains in sheep and goats, sheep scrapie isolates from different European countries were also included in the study. Once the species barrier phenomenon was overcome, an accurate classification of the isolates was attained. Thus, the use of just two rodent models allowed us to fully differentiate at least four different classical scrapie strains in small ruminants and to identify isolates containing mixtures of strains. This work reinforces the idea that classical scrapie in small ruminants is a prion disease caused by multiple different prion strains and not by a single strain, as is the case for epidemic classical bovine spongiform encephalopathy (BSE-C). In addition, the clear dissimilarity between the different scrapie strains and BSE-C does not support the idea that classical scrapie is the origin of epidemic BSE-C.


Subject(s)
Goat Diseases/etiology , Prions/adverse effects , Scrapie/etiology , Sheep Diseases/etiology , Animals , Europe , Goats , Sheep , Sheep, Domestic
8.
Emerg Infect Dis ; 26(6): 1130-1139, 2020 06.
Article in English | MEDLINE | ID: mdl-32441630

ABSTRACT

Classical bovine spongiform encephalopathy (BSE) is the only zoonotic prion disease described to date. Although the zoonotic potential of atypical BSE prions have been partially studied, an extensive analysis is still needed. We conducted a systematic study by inoculating atypical BSE isolates from different countries in Europe into transgenic mice overexpressing human prion protein (PrP): TgMet129, TgMet/Val129, and TgVal129. L-type BSE showed a higher zoonotic potential in TgMet129 mice than classical BSE, whereas Val129-PrP variant was a strong molecular protector against L-type BSE prions, even in heterozygosis. H-type BSE could not be transmitted to any of the mice. We also adapted 1 H- and 1 L-type BSE isolate to sheep-PrP transgenic mice and inoculated them into human-PrP transgenic mice. Atypical BSE prions showed a modification in their zoonotic ability after adaptation to sheep-PrP producing agents able to infect TgMet129 and TgVal129, bearing features that make them indistinguishable of sporadic Creutzfeldt-Jakob disease prions.


Subject(s)
Encephalopathy, Bovine Spongiform , Prion Diseases , Prions , Animals , Brain/metabolism , Cattle , Europe , Mice , Mice, Transgenic , Prions/genetics , Prions/metabolism , Sheep
9.
Acta Neuropathol ; 139(3): 527-546, 2020 03.
Article in English | MEDLINE | ID: mdl-31673874

ABSTRACT

Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.


Subject(s)
ADAM10 Protein/metabolism , Heparitin Sulfate/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/metabolism , Animals , Brain/metabolism , Brain/pathology , Humans , Mice
10.
J Virol ; 92(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30282706

ABSTRACT

Co-occurrence of different prion strains into the same host has been recognized as a natural phenomenon for several sporadic Creutzfeldt-Jakob disease (sCJD) patients and natural scrapie cases. The final outcome of prion coinfection is not easily predictable. In addition to the usual factors that influence prion conversion, the replication of one strain may entail positive or negative consequences to the other. The main aim of this study was to gain insights into the prion coinfection and interference concepts and their potential therapeutic implications. Here, different mouse models were challenged with several combinations of prion strains coupled on the basis of the lengths of their incubation periods and the existence/absence of a species barrier in the tested animal model. We found that nontransmissible strains can interfere the replication of fully transmissible strains when there is a species transmission barrier involved, as happened with the combination of a mouse (22L) and a human (sCJD) strain. However, this phenomenon seems to be strain dependent, since no interference was observed when the human strain coinoculated was vCJD. For the other combinations tested in this study, the results suggest that both strains replicate independently without effect on the replication of one over the other. It is common that the strain with more favorable conditions (e.g., a higher speed of disease development or the absence of a species barrier) ends being the only one detectable at the terminal stage of the disease. However, this does not exclude the replication of the least favored strain, leading to situations of the coexistence of prion strains.IMPORTANCE As a general conclusion, the outcome of prion coinfection is strongly dependent on the strain combination and the model utilized and is therefore difficult to predict. The coexistence of several prion strains may remain undetected if one of the strains has more favorable conditions to replicate in the host. The use of several models (such as a transgenic mouse expressing PrP from different species) to analyze field prion isolates is recommended to avoid this situation. The inference effect exerted by nonreplicative prion strains should be considered an interesting tool to advance in new therapeutic strategies for treating prion diseases; it may even be a proper therapeutic strategy.


Subject(s)
Brain/metabolism , Prion Diseases/pathology , Prions/classification , Prions/genetics , Animals , Brain/pathology , Coinfection , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Prion Diseases/metabolism , Prion Diseases/transmission , Prions/metabolism , Species Specificity
11.
J Biol Chem ; 292(46): 19076-19086, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28931606

ABSTRACT

Prion transmission between species is governed in part by primary sequence similarity between the infectious prion aggregate, PrPSc, and the cellular prion protein of the host, PrPC A puzzling feature of prion formation is that certain PrPC sequences, such as that of bank vole, can be converted by a remarkably broad array of different mammalian prions, whereas others, such as rabbit, show robust resistance to cross-species prion conversion. To examine the structural determinants that confer susceptibility or resistance to prion conversion, we systematically tested over 40 PrPC variants of susceptible and resistant PrPC sequences in a prion conversion assay. Five key residue positions markedly impacted prion conversion, four of which were in steric zipper segments where side chains from amino acids tightly interdigitate in a dry interface. Strikingly, all five residue substitutions modulating prion conversion involved the gain or loss of an asparagine or glutamine residue. For two of the four positions, Asn and Gln residues were not interchangeable, revealing a strict requirement for either an Asn or Gln residue. Bank voles have a high number of Asn and Gln residues and a high Asn:Gln ratio. These findings suggest that a high number of Asn and Gln residues at specific positions may stabilize ß-sheets and lower the energy barrier for cross-species prion transmission, potentially because of hydrogen bond networks from side chain amides forming extended Asn/Gln ladders. These data also suggest that multiple PrPC segments containing Asn/Gln residues may act in concert along a replicative interface to promote prion conversion.


Subject(s)
Asparagine/chemistry , Glutamine/chemistry , PrPC Proteins/chemistry , Prion Diseases/transmission , Amino Acid Substitution , Amyloid/chemistry , Amyloid/genetics , Amyloid/metabolism , Animals , Arvicolinae , Asparagine/genetics , Asparagine/metabolism , Glutamine/genetics , Glutamine/metabolism , Humans , Mice, Inbred C57BL , Models, Molecular , PrPC Proteins/genetics , PrPC Proteins/metabolism , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Diseases/veterinary , Protein Conformation, beta-Strand , Protein Stability , Rabbits
13.
Emerg Infect Dis ; 23(9): 1522-1530, 2017 09.
Article in English | MEDLINE | ID: mdl-28820136

ABSTRACT

Bovine spongiform encephalopathy (BSE) is the only known zoonotic prion that causes variant Creutzfeldt-Jakob disease (vCJD) in humans. The major risk determinant for this disease is the polymorphic codon 129 of the human prion protein (Hu-PrP), where either methionine (Met129) or valine (Val129) can be encoded. To date, all clinical and neuropathologically confirmed vCJD cases have been Met129 homozygous, with the exception of 1 recently reported Met/Val heterozygous case. Here, we found that transgenic mice homozygous for Val129 Hu-PrP show severely restricted propagation of the BSE prion strain, but this constraint can be partially overcome by adaptation of the BSE agent to the Met129 Hu-PrP. In addition, the transmission of vCJD to transgenic mice homozygous for Val129 Hu-PrP resulted in a prion with distinct strain features. These observations may indicate increased risk for vCJD secondary transmission in Val129 Hu-PrP-positive humans with the emergence of new strain features.


Subject(s)
Creutzfeldt-Jakob Syndrome/pathology , Disease Resistance/genetics , Encephalopathy, Bovine Spongiform/immunology , Prion Proteins/immunology , Valine/immunology , Amino Acid Substitution , Animals , Brain/pathology , Cattle , Codon , Creutzfeldt-Jakob Syndrome/transmission , Encephalopathy, Bovine Spongiform/pathology , Encephalopathy, Bovine Spongiform/transmission , Gene Expression , Humans , Injections, Intraventricular , Methionine/genetics , Methionine/immunology , Mice , Mice, Transgenic , Peptide Hydrolases/chemistry , Prion Proteins/chemistry , Prion Proteins/genetics , Valine/genetics
14.
Vet Res ; 47(1): 96, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27659200

ABSTRACT

Host prion (PrPC) genotype is a major determinant for the susceptibility to prion diseases. The Q/K222-PrPC polymorphic variant provides goats and mice with high resistance against classical scrapie and bovine spongiform encephalopathy (BSE); yet its effect against atypical scrapie is unknown. Here, transgenic mice expressing the goat wild-type (wt) or the K222-PrPC variant were intracerebrally inoculated with several natural cases of atypical scrapie from sheep and goat and their susceptibility to the prion disease was determined. Goat wt and K222-PrPC transgenic mice were 100% susceptible to all the atypical scrapie isolates, showing similar survival times and almost identical disease phenotypes. The capacity of the K222-PrPC variant to replicate specifically the atypical scrapie strain as efficiently as the goat wt PrPC, but not the classical scrapie or cattle-BSE as previously reported, further suggests the involvement of concrete areas of the host PrPC in the strain-dependent replication of prions.

16.
J Infect Dis ; 212(4): 664-72, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25722297

ABSTRACT

BACKGROUND: The prion protein-encoding gene (PRNP) is one of the major determinants for scrapie occurrence in sheep and goats. However, its effect on bovine spongiform encephalopathy (BSE) transmission to goats is not clear. METHODS: Goats harboring wild-type, R/Q211 or Q/K222 PRNP genotypes were orally inoculated with a goat-BSE isolate to assess their relative susceptibility to BSE infection. Goats were killed at different time points during the incubation period and after the onset of clinical signs, and their brains as well as several peripheral tissues were analyzed for the accumulation of pathological prion protein (PrP(Sc)) and prion infectivity by mouse bioassay. RESULTS: R/Q211 goats displayed delayed clinical signs compared with wild-type goats. Deposits of PrP(Sc) were detected only in brain, whereas infectivity was present in peripheral tissues too. In contrast, none of the Q/K222 goats showed any evidence of clinical prion disease. No PrP(Sc) accumulation was observed in their brains or peripheral tissues, but very low infectivity was detected in some tissues very long after inoculation (44-45 months). CONCLUSIONS: These results demonstrate that transmission of goat BSE is genotype dependent, and they highlight the pivotal protective effect of the K222 PRNP variant in the oral susceptibility of goats to BSE.


Subject(s)
Encephalopathy, Bovine Spongiform/transmission , Goat Diseases/pathology , Goat Diseases/transmission , Prions/genetics , Animals , Cattle , Genetic Predisposition to Disease , Genotype , Goats , Mice , Mice, Transgenic , Species Specificity
17.
J Virol ; 88(5): 2670-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352451

ABSTRACT

UNLABELLED: The prion protein-encoding gene (prnp) strongly influences the susceptibility of small ruminants to transmissible spongiform encephalopathies (TSEs). Hence, selective breeding programs have been implemented to increase sheep resistance to scrapie. For goats, epidemiological and experimental studies have provided some association between certain polymorphisms of the cellular prion protein (PrP(C)) and resistance to TSEs. Among them, the Q/K polymorphism at PrP(C) codon 222 (Q/K222) yielded the most promising results. In this work, we investigated the individual effects of the K222-PrP(C) variant on the resistance/susceptibility of goats to TSEs. For that purpose, we generated two transgenic mouse lines, expressing either the Q222 (wild type) or K222 variant of goat PrP(C). Both mouse lines were challenged intracerebrally with a panel of TSE isolates. Transgenic mice expressing the wild-type (Q222) allele were fully susceptible to infection with all tested isolates, whereas transgenic mice expressing similar levels of the K222 allele were resistant to all goat scrapie and cattle BSE isolates but not to goat BSE isolates. Finally, heterozygous K/Q222 mice displayed a reduced susceptibility to the tested panel of scrapie isolates. These results demonstrate a highly protective effect of the K222 variant against a broad panel of different prion isolates and further reinforce the argument supporting the use of this variant in breeding programs to control TSEs in goat herds. IMPORTANCE: The objective of this study was to determine the role of the K222 variant of the prion protein (PrP) in the susceptibility/resistance of goats to transmissible spongiform encephalopathies (TSEs). Results showed that transgenic mice expressing the goat K222-PrP polymorphic variant are resistant to scrapie and bovine spongiform encephalopathy (BSE) agents. This protective effect was also observed in heterozygous Q/K222 animals. Therefore, the single amino acid exchange from Q to K at codon 222 of the cellular prion protein provides resistance against TSEs. All the results presented here support the view that the K222 polymorphic variant is a good candidate for selective breeding programs to control and eradicate scrapie in goat herds.


Subject(s)
Disease Resistance/genetics , Polymorphism, Genetic , PrPC Proteins/genetics , Scrapie/genetics , Animals , Cattle , Codon , Encephalopathy, Bovine Spongiform/genetics , Encephalopathy, Bovine Spongiform/mortality , Encephalopathy, Bovine Spongiform/transmission , Female , Gene Expression , Genetic Predisposition to Disease , Genotype , Goats , Male , Mice , Mice, Transgenic , PrPC Proteins/metabolism , Scrapie/mortality , Scrapie/transmission , Sheep
18.
J Virol ; 88(5): 2406-13, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24284317

ABSTRACT

In goats, several field studies have identified coding mutations of the gene encoding the prion protein (I/M142, N/D146, S/D146, R/Q211, and Q/K222) that are associated with a lower risk of developing classical scrapie. However, the data related to the levels of resistance to transmissible spongiform encephalopathies (TSEs) of these different PRNP gene mutations are still considered insufficient for developing large-scale genetic selection against scrapie in this species. In this study, we inoculated wild-type (WT) PRNP (I142R154R211Q222) goats and homozygous and/or heterozygous I/M142, R/H154, R/Q211, and Q/K222 goats with a goat natural scrapie isolate by either the oral or the intracerebral (i.c.) route. Our results indicate that the I/M142 PRNP polymorphism does not provide substantial resistance to scrapie infection following intracerebral or oral inoculation. They also demonstrate that H154, Q211, and K222 PRNP allele carriers are all resistant to scrapie infection following oral exposure. However, in comparison to WT animals, the H154 and Q211 allele carriers displayed only moderate increases in the incubation period following i.c. challenge. After i.c. challenge, heterozygous K222 and a small proportion of homozygous K222 goats also developed the disease, but with incubation periods that were 4 to 5 times longer than those in WT animals. These results support the contention that the K222 goat prion protein variant provides a strong but not absolutely protective effect against classical scrapie.


Subject(s)
Genetic Predisposition to Disease , Goat Diseases/genetics , Scrapie/genetics , Alleles , Animals , Codon , Female , Genotype , Goat Diseases/metabolism , Goat Diseases/pathology , Goats/genetics , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Tissue Distribution
19.
Emerg Infect Dis ; 20(12): 2006-14, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25418590

ABSTRACT

Variably protease-sensitive prionopathy (VPSPr), a recently identified and seemingly sporadic human prion disease, is distinct from Creutzfeldt-Jakob disease (CJD) but shares features of Gerstmann-Sträussler-Scheinker disease (GSS). However, contrary to exclusively inherited GSS, no prion protein (PrP) gene variations have been detected in VPSPr, suggesting that VPSPr might be the long-sought sporadic form of GSS. The VPSPr atypical features raised the issue of transmissibility, a prototypical property of prion diseases. We inoculated VPSPr brain homogenate into transgenic mice expressing various levels of human PrP (PrPC). On first passage, 54% of challenged mice showed histopathologic lesions, and 34% harbored abnormal PrP similar to that of VPSPr. Surprisingly, no prion disease was detected on second passage. We concluded that VPSPr is transmissible; thus, it is an authentic prion disease. However, we speculate that normal human PrPC is not an efficient conversion substrate (or mouse brain not a favorable environment) and therefore cannot sustain replication beyond the first passage.


Subject(s)
Prion Diseases/transmission , Animals , Brain/metabolism , Brain/pathology , Case-Control Studies , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Prion Diseases/genetics , Prion Diseases/pathology , Prions/genetics , Prions/metabolism
20.
Emerg Infect Dis ; 19(12): 1938-47, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24274622

ABSTRACT

We generated transgenic mice expressing bovine cellular prion protein (PrP(C)) with a leucine substitution at codon 113 (113L). This protein is homologous to human protein with mutation 102L, and its genetic link with Gerstmann-Sträussler-Scheinker syndrome has been established. This mutation in bovine PrP(C) causes a fully penetrant, lethal, spongiform encephalopathy. This genetic disease was transmitted by intracerebral inoculation of brain homogenate from ill mice expressing mutant bovine PrP to mice expressing wild-type bovine PrP, which indicated de novo generation of infectious prions. Our findings demonstrate that a single amino acid change in the PrP(C) sequence can induce spontaneous generation of an infectious prion disease that differs from all others identified in hosts expressing the same PrP(C) sequence. These observations support the view that a variety of infectious prion strains might spontaneously emerge in hosts displaying random genetic PrP(C) mutations.


Subject(s)
Prion Diseases/genetics , Animals , Brain/metabolism , Brain/pathology , Cattle , Encephalopathy, Bovine Spongiform/genetics , Encephalopathy, Bovine Spongiform/pathology , Encephalopathy, Bovine Spongiform/transmission , Gene Expression , Genotype , Hippocampus/metabolism , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Mutation , Open Reading Frames , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Prion Diseases/pathology , Prion Diseases/transmission
SELECTION OF CITATIONS
SEARCH DETAIL