Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Cell Sci ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056156

ABSTRACT

Small GTPases switch between GDP- and GTP-bound states in cell signaling. The ADP-ribosylation factor (ARF) family is involved in vesicle trafficking. Though evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5/HALLIMASCH/ARL2/ARLC1 from Arabidopsis thaliana, including two conserved point mutants, suspected to be functional for nucleotide exchange and GTP hydrolysis, TTN5T30N and TTN5Q70L. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 in situ immunolocalization in Arabidopsis seedlings and in transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and dynamically associated with membranes of vesicles, Golgi stacks and multivesicular bodies. While TTN5Q70L mirrored wild-type TTN5 behavior, TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with membrane dynamics, likely associated with vesicle transport in the endomembrane system.

2.
Hum Mol Genet ; 32(2): 304-318, 2023 01 06.
Article in English | MEDLINE | ID: mdl-35981076

ABSTRACT

Heterozygous germline missense variants in the HRAS gene underlie Costello syndrome (CS). The molecular basis for cutaneous manifestations in CS is largely unknown. We used an immortalized human cell line, HaCaT keratinocytes, stably expressing wild-type or CS-associated (p.Gly12Ser) HRAS and defined RIN1 as quantitatively most prominent, high-affinity effector of active HRAS in these cells. As an exchange factor for RAB5 GTPases, RIN1 is involved in endosomal sorting of cell-adhesion integrins. RIN1-dependent RAB5A activation was strongly increased by HRASGly12Ser, and HRAS-RIN1-ABL1/2 signaling was induced in HRASWT- and HRASGly12Ser-expressing cells. Along with that, HRASGly12Ser expression decreased total integrin levels and enriched ß1 integrin in RAB5- and EEA1-positive early endosomes. The intracellular level of active ß1 integrin was increased in HRASGly12Ser HaCaT keratinocytes due to impaired recycling, whereas RIN1 disruption raised ß1 integrin cell surface distribution. HRASGly12Ser induced co-localization of ß1 integrin with SNX17 and RAB7 in early/sorting and late endosomes, respectively. Thus, by retaining ß1 integrin in intracellular endosomal compartments, HRAS-RIN1 signaling affects the subcellular availability of ß1 integrin. This may interfere with integrin-dependent processes as we detected for HRASGly12Ser cells spreading on fibronectin. We conclude that dysregulation of receptor trafficking and integrin-dependent processes such as cell adhesion are relevant in the pathobiology of CS.


Subject(s)
Costello Syndrome , Skin Diseases , Humans , Integrins/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Keratinocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics
3.
Angiogenesis ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969873

ABSTRACT

Arteriovenous malformations (AVM) are benign vascular anomalies prone to pain, bleeding, and progressive growth. AVM are mainly caused by mosaic pathogenic variants of the RAS-MAPK pathway. However, a causative variant is not identified in all patients. Using ultra-deep sequencing, we identified novel somatic RIT1 delins variants in lesional tissue of three AVM patients. RIT1 encodes a RAS-like protein that can modulate RAS-MAPK signaling. We expressed RIT1 variants in HEK293T cells, which led to a strong increase in ERK1/2 phosphorylation. Endothelial-specific mosaic overexpression of RIT1 delins in zebrafish embryos induced AVM formation, highlighting their functional importance in vascular development. Both ERK1/2 hyperactivation in vitro and AVM formation in vivo could be suppressed by pharmacological MEK inhibition. Treatment with the MEK inhibitor trametinib led to a significant decrease in bleeding episodes and AVM size in one patient. Our findings implicate RIT1 in AVM formation and provide a rationale for clinical trials with targeted treatments.

4.
J Biol Chem ; 296: 100626, 2021.
Article in English | MEDLINE | ID: mdl-33930461

ABSTRACT

RAS effectors specifically interact with GTP-bound RAS proteins to link extracellular signals to downstream signaling pathways. These interactions rely on two types of domains, called RAS-binding (RB) and RAS association (RA) domains, which share common structural characteristics. Although the molecular nature of RAS-effector interactions is well-studied for some proteins, most of the RA/RB-domain-containing proteins remain largely uncharacterized. Here, we searched through human proteome databases, extracting 41 RA domains in 39 proteins and 16 RB domains in 14 proteins, each of which can specifically select at least one of the 25 members in the RAS family. We next comprehensively investigated the sequence-structure-function relationship between different representatives of the RAS family, including HRAS, RRAS, RALA, RAP1B, RAP2A, RHEB1, and RIT1, with all members of RA domain family proteins (RASSFs) and the RB-domain-containing CRAF. The binding affinity for RAS-effector interactions, determined using fluorescence polarization, broadly ranged between high (0.3 µM) and very low (500 µM) affinities, raising interesting questions about the consequence of these variable binding affinities in the regulation of signaling events. Sequence and structural alignments pointed to two interaction hotspots in the RA/RB domains, consisting of an average of 19 RAS-binding residues. Moreover, we found novel interactions between RRAS1, RIT1, and RALA and RASSF7, RASSF9, and RASSF1, respectively, which were systematically explored in sequence-structure-property relationship analysis, and validated by mutational analysis. These data provide a set of distinct functional properties and putative biological roles that should now be investigated in the cellular context.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Protein Interaction Domains and Motifs , Tumor Suppressor Proteins/metabolism , ras Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Computational Biology , HEK293 Cells , Humans , Protein Binding , Signal Transduction , Tumor Suppressor Proteins/genetics , ras Proteins/genetics
5.
Hum Mol Genet ; 29(11): 1772-1783, 2020 07 21.
Article in English | MEDLINE | ID: mdl-31108500

ABSTRACT

The RASopathies are a group of genetic syndromes caused by upregulated RAS signaling. Noonan syndrome (NS), the most common entity among the RASopathies, is characterized mainly by short stature, cardiac anomalies and distinctive facial features. Mutations in multiple RAS-MAPK pathway-related genes have been associated with NS and related phenotypes. We describe two unrelated patients presenting with hypertrophic cardiomyopathy (HCM) and dysmorphic features suggestive of NS. One of them died in the neonatal period because of cardiac failure. Targeted sequencing revealed de novo MRAS variants, c.203C > T (p.Thr68Ile) and c.67G > C (p.Gly23Arg) as causative events. MRAS has only recently been related to NS based on the observation of two unrelated affected individuals with de novo variants involving the same codons here found mutated. Gly23 and Thr68 are highly conserved residues, and the corresponding codons are known hotspots for RASopathy-associated mutations in other RAS proteins. Functional analyses documented high level of activation of MRAS mutants due to impaired GTPase activity, which was associated with constitutive plasma membrane targeting, prolonged localization in non-raft microdomains, enhanced binding to PPP1CB and SHOC2 protein, and variably increased MAPK and PI3K-AKT activation. This report provides additional evidence that a narrow spectrum of activating mutations in MRAS represents another rare cause of NS, and that MRAS has to be counted among the RASopathy genes predisposing to HCM. Moreover, our findings further emphasize the relevance of the MRAS-SHOC2-PPP1CB axis in the control of MAPK signaling, and the contribution of both MAPK and PI3K-AKT pathways in MRAS functional upregulation.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Intracellular Signaling Peptides and Proteins/genetics , Noonan Syndrome/genetics , Protein Phosphatase 1/genetics , ras Proteins/genetics , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/pathology , Child, Preschool , Female , Gain of Function Mutation/genetics , Humans , Infant , Infant, Newborn , MAP Kinase Signaling System/genetics , Male , Noonan Syndrome/complications , Noonan Syndrome/pathology , Phenotype , Phosphatidylinositol 3-Kinases
6.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31130282

ABSTRACT

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Subject(s)
Gain of Function Mutation , Guanosine Triphosphate/metabolism , Membrane Proteins/genetics , Monomeric GTP-Binding Proteins/genetics , Noonan Syndrome/etiology , Adult , Child , Female , Genetic Association Studies , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Noonan Syndrome/pathology , Pedigree , Protein Conformation
7.
Biochem J ; 478(14): 2793-2809, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34232285

ABSTRACT

Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.


Subject(s)
GRB2 Adaptor Protein/chemistry , Phosphotyrosine/chemistry , Protein Domains , SOS1 Protein/chemistry , src Homology Domains , Amino Acid Sequence , Binding Sites/genetics , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Phosphotyrosine/metabolism , Protein Binding , SOS1 Protein/genetics , SOS1 Protein/metabolism
8.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012107

ABSTRACT

The IQ motif-containing GTPase-activating protein (IQGAP) family composes of three highly-related and evolutionarily conserved paralogs (IQGAP1, IQGAP2 and IQGAP3), which fine tune as scaffolding proteins numerous fundamental cellular processes. IQGAP1 is described as an effector of CDC42, although its effector function yet re-mains unclear. Biophysical, biochemical and molecular dynamic simulation studies have proposed that IQGAP RASGAP-related domains (GRDs) bind to the switch regions and the insert helix of CDC42 in a GTP-dependent manner. Our kinetic and equilibrium studies have shown that IQGAP1 GRD binds, in contrast to its C-terminal 794 amino acids (called C794), CDC42 in a nucleotide-independent manner indicating a binding outside the switch regions. To resolve this discrepancy and move beyond the one-sided view of GRD, we carried out affinity measurements and a systematic mutational analysis of the interfacing residues between GRD and CDC42 based on the crystal structure of the IQGAP2 GRD-CDC42Q61L GTP complex. We determined a 100-fold lower affinity of the GRD1 of IQGAP1 and of GRD2 of IQGAP2 for CDC42 mGppNHp in comparison to C794/C795 proteins. Moreover, partial and major mutation of CDC42 switch regions substantially affected C794/C795 binding but only a little GRD1 and remarkably not at all the GRD2 binding. However, we clearly showed that GRD2 contributes to the overall affinity of C795 by using a 11 amino acid mutated GRD variant. Furthermore, the GRD1 binding to the CDC42 was abolished using specific point mutations within the insert helix of CDC42 clearly supporting the notion that CDC42 binding site(s) of IQGAP GRD lies outside the switch regions among others in the insert helix. Collectively, this study provides further evidence for a mechanistic framework model that is based on a multi-step binding process, in which IQGAP GRD might act as a 'scaffolding domain' by binding CDC42 irrespective of its nucleotide-bound forms, followed by other IQGAP domains downstream of GRD that act as an effector domain and is in charge for a GTP-dependent interaction with CDC42.


Subject(s)
cdc42 GTP-Binding Protein , ras GTPase-Activating Proteins , Binding Sites , GTPase-Activating Proteins/metabolism , Guanosine Triphosphate/metabolism , Nucleotides/metabolism , Protein Binding , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism
9.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830479

ABSTRACT

IQ motif-containing GTPase-activating proteins (IQGAPs) modulate a wide range of cellular processes by acting as scaffolds and driving protein components into distinct signaling networks. Their functional states have been proposed to be controlled by members of the RHO family of GTPases, among other regulators. In this study, we show that IQGAP1 and IQGAP2 can associate with CDC42 and RAC1-like proteins but not with RIF, RHOD, or RHO-like proteins, including RHOA. This seems to be based on the distribution of charged surface residues, which varies significantly among RHO GTPases despite their high sequence homology. Although effector proteins bind first to the highly flexible switch regions of RHO GTPases, additional contacts outside are required for effector activation. Sequence alignment and structural, mutational, and competitive biochemical analyses revealed that RHO GTPases possess paralog-specific residues outside the two highly conserved switch regions that essentially determine the selectivity of RHO GTPase binding to IQGAPs. Amino acid substitution of these specific residues in RHOA to the corresponding residues in RAC1 resulted in RHOA association with IQGAP1. Thus, electrostatics most likely plays a decisive role in these interactions.


Subject(s)
Protein Binding/genetics , cdc42 GTP-Binding Protein/genetics , ras GTPase-Activating Proteins/genetics , rhoA GTP-Binding Protein/genetics , Amino Acid Substitution/genetics , Binding Sites/genetics , Humans , Mutation/genetics , Sequence Alignment , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/genetics
11.
PLoS Genet ; 13(3): e1006684, 2017 03.
Article in English | MEDLINE | ID: mdl-28346493

ABSTRACT

Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation of gene expression in Ptpn11D61Y mice and suggests that these deficits contribute to the pathophysiology of cognitive impairments in NS.


Subject(s)
Disease Models, Animal , Gene Expression , Mutation , Neurons/metabolism , Noonan Syndrome/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction/genetics , Animals , Blotting, Western , Cells, Cultured , Gene Expression Profiling/methods , Humans , Maze Learning/physiology , Mice, Inbred C57BL , Mice, Knockout , Noonan Syndrome/metabolism , Noonan Syndrome/physiopathology , Prosencephalon/metabolism , Prosencephalon/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Reverse Transcriptase Polymerase Chain Reaction , ras Proteins/genetics , ras Proteins/metabolism
12.
Hum Mutat ; 38(7): 798-804, 2017 07.
Article in English | MEDLINE | ID: mdl-28390077

ABSTRACT

RASopathies are a group of rare, clinically related conditions affecting development and growth, and are caused by germline mutations in genes encoding signal transducers and modulators with a role in the RAS signaling network. These disorders share facial dysmorphia, short stature, variable cognitive deficits, skeletal and cardiac defects, and a variable predisposition to malignancies. Here, we report on a de novo 10-nucleotide-long deletion in HRAS (c.481_490delGGGACCCTCT, NM_176795.4; p.Leu163ProfsTer52, NP_789765.1) affecting transcript processing as a novel event underlying a RASopathy characterized by developmental delay, intellectual disability and autistic features, distinctive coarse facies, reduced growth, and ectodermal anomalies. Molecular and biochemical studies demonstrated that the deletion promotes constitutive retention of exon IDX, which is generally skipped during HRAS transcript processing, and results in a stable and mildly hyperactive GDP/GTP-bound protein that is constitutively targeted to the plasma membrane. Our findings document a new mechanism leading to altered HRAS function that underlies a previously unappreciated phenotype within the RASopathy spectrum.


Subject(s)
Developmental Disabilities/genetics , Gene Expression Regulation, Neoplastic , Genes, ras , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Autistic Disorder/genetics , COS Cells , Cell Membrane/metabolism , Child , Child, Preschool , Chlorocebus aethiops , Exons , Facies , Gene Deletion , Germ-Line Mutation , Humans , Intellectual Disability/genetics , Male , Phenotype , RNA, Messenger/metabolism , Signal Transduction
13.
J Biol Chem ; 291(51): 26364-26376, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27815503

ABSTRACT

IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity, and transmigration. The RHO family proteins CDC42 and RAC1 have been shown to mainly interact with the GAP-related domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underlie a multiple-step binding mechanism: (i) a high affinity, GTP-dependent binding of RGCT to the switch regions of CDC42 or RAC1 and (ii) a very low affinity binding of GRD and a C terminus adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses.


Subject(s)
cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/metabolism , Binding Sites , Humans , Kinetics , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/genetics , ras GTPase-Activating Proteins/chemistry , ras GTPase-Activating Proteins/genetics
14.
J Biol Chem ; 291(16): 8399-413, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26884329

ABSTRACT

Hepatic stellate cells (HSCs) were recently identified as liver-resident mesenchymal stem cells. HSCs are activated after liver injury and involved in pivotal processes, such as liver development, immunoregulation, regeneration, and also fibrogenesis. To date, several studies have reported candidate pathways that regulate the plasticity of HSCs during physiological and pathophysiological processes. Here we analyzed the expression changes and activity of the RAS family GTPases and thereby investigated the signaling networks of quiescent HSCs versus activated HSCs. For the first time, we report that embryonic stem cell-expressed RAS (ERAS) is specifically expressed in quiescent HSCs and down-regulated during HSC activation via promoter DNA methylation. Notably, in quiescent HSCs, the high level of ERAS protein correlates with the activation of AKT, STAT3, mTORC2, and HIPPO signaling pathways and inactivation of FOXO1 and YAP. Our data strongly indicate that in quiescent HSCs, ERAS targets AKT via two distinct pathways driven by PI3Kα/δ and mTORC2, whereas in activated HSCs, RAS signaling shifts to RAF-MEK-ERK. Thus, in contrast to the reported role of ERAS in tumor cells associated with cell proliferation, our findings indicate that ERAS is important to maintain quiescence in HSCs.


Subject(s)
DNA Methylation/physiology , Hepatic Stellate Cells/enzymology , MAP Kinase Signaling System/physiology , Oncogene Protein p21(ras)/biosynthesis , Promoter Regions, Genetic/physiology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hepatic Stellate Cells/cytology , Male , Mechanistic Target of Rapamycin Complex 2 , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oncogene Protein p21(ras)/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , YAP-Signaling Proteins
15.
J Biol Chem ; 291(39): 20353-71, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27481945

ABSTRACT

RHO GTPase-activating proteins (RHOGAPs) are one of the major classes of regulators of the RHO-related protein family that are crucial in many cellular processes, motility, contractility, growth, differentiation, and development. Using database searches, we extracted 66 distinct human RHOGAPs, from which 57 have a common catalytic domain capable of terminating RHO protein signaling by stimulating the slow intrinsic GTP hydrolysis (GTPase) reaction. The specificity of the majority of the members of RHOGAP family is largely uncharacterized. Here, we comprehensively investigated the sequence-structure-function relationship between RHOGAPs and RHO proteins by combining our in vitro data with in silico data. The activity of 14 representatives of the RHOGAP family toward 12 RHO family proteins was determined in real time. We identified and structurally verified hot spots in the interface between RHOGAPs and RHO proteins as critical determinants for binding and catalysis. We have found that the RHOGAP domain itself is nonselective and in some cases rather inefficient under cell-free conditions. Thus, we propose that other domains of RHOGAPs confer substrate specificity and fine-tune their catalytic efficiency in cells.


Subject(s)
GTPase-Activating Proteins/chemistry , rho GTP-Binding Proteins/chemistry , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Humans , Protein Domains , Structure-Activity Relationship , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
16.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24705357

ABSTRACT

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Subject(s)
Carcinogenesis/genetics , Mutation/physiology , Phenotype , ras Proteins/genetics , Animals , Caenorhabditis elegans , Cohort Studies , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myelomonocytic, Juvenile/genetics , MAP Kinase Kinase Kinases/metabolism , Noonan Syndrome/genetics , Oncogene Protein v-akt/metabolism , Signal Transduction/genetics , ras Proteins/chemistry , ras Proteins/metabolism
17.
J Biol Chem ; 289(1): 74-88, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24273164

ABSTRACT

The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.


Subject(s)
Aurora Kinase A/metabolism , Carrier Proteins/metabolism , Centrosome/metabolism , Fetal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitosis/physiology , Animals , Aurora Kinase A/genetics , Carrier Proteins/genetics , Fetal Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Microtubule-Associated Proteins/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding/physiology , Protein Structure, Tertiary
18.
J Biol Chem ; 289(10): 6839-6849, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24443565

ABSTRACT

The three deleted in liver cancer genes (DLC1-3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we comprehensively investigated the molecular mechanism underlying cross-talk between two distinct regulators of small GTP-binding proteins using structural and biochemical methods. We demonstrate that only the SH3 domain of p120 selectively inhibits the RhoGAP activity of all three DLC isoforms as compared with a large set of other representative SH3 or RhoGAP proteins. Structural and mutational analyses provide new insights into a putative interaction mode of the p120 SH3 domain with the DLC1 RhoGAP domain that is atypical and does not follow the classical PXXP-directed interaction. Hence, p120 associates with the DLC1 RhoGAP domain by targeting the catalytic arginine finger and thus by competitively and very potently inhibiting RhoGAP activity. The novel findings of this study shed light on the molecular mechanisms underlying the DLC inhibitory effects of p120 and suggest a functional cross-talk between Ras and Rho proteins at the level of regulatory proteins.


Subject(s)
Catalytic Domain , GTPase-Activating Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , p120 GTPase Activating Protein/chemistry , Alanine/chemistry , DNA Mutational Analysis , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Humans , Metabolic Networks and Pathways , Protein Binding , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , p120 GTPase Activating Protein/genetics
19.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38499327

ABSTRACT

Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.


Subject(s)
Sirtuins , Humans , HEK293 Cells , Sirtuins/genetics , Sirtuins/metabolism , Signal Transduction , Mitochondria/metabolism , raf Kinases/genetics , raf Kinases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
20.
Cells ; 13(2)2024 01 20.
Article in English | MEDLINE | ID: mdl-38275820

ABSTRACT

SRC homology 3 (SH3) domains are critical interaction modules that orchestrate the assembly of protein complexes involved in diverse biological processes. They facilitate transient protein-protein interactions by selectively interacting with proline-rich motifs (PRMs). A database search revealed 298 SH3 domains in 221 human proteins. Multiple sequence alignment of human SH3 domains is useful for phylogenetic analysis and determination of their selectivity towards PRM-containing peptides (PRPs). However, a more precise functional classification of SH3 domains is achieved by constructing a phylogenetic tree only from PRM-binding residues and using existing SH3 domain-PRP structures and biochemical data to determine the specificity within each of the 10 families for particular PRPs. In addition, the C-terminal proline-rich domain of the RAS activator SOS1 covers 13 of the 14 recognized proline-rich consensus sequence motifs, encompassing differential PRP pattern selectivity among all SH3 families. To evaluate the binding capabilities and affinities, we conducted fluorescence dot blot and polarization experiments using 25 representative SH3 domains and various PRPs derived from SOS1. Our analysis has identified 45 interacting pairs, with binding affinities ranging from 0.2 to 125 micromolar, out of 300 tested and potential new SH3 domain-SOS1 interactions. Furthermore, it establishes a framework to bridge the gap between SH3 and PRP interactions and provides predictive insights into the potential interactions of SH3 domains with PRMs based on sequence specifications. This novel framework has the potential to enhance the understanding of protein networks mediated by SH3 domain-PRM interactions and be utilized as a general approach for other domain-peptide interactions.


Subject(s)
Peptides , src Homology Domains , Humans , Amino Acid Sequence , GRB2 Adaptor Protein/metabolism , Protein Binding , Phylogeny , Peptides/metabolism , Proline/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL