Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell ; 184(23): 5715-5727.e12, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34717799

ABSTRACT

The enteric nervous system (ENS) controls several intestinal functions including motility and nutrient handling, which can be disrupted by infection-induced neuropathies or neuronal cell death. We investigated possible tolerance mechanisms preventing neuronal loss and disruption in gut motility after pathogen exposure. We found that following enteric infections, muscularis macrophages (MMs) acquire a tissue-protective phenotype that prevents neuronal loss, dysmotility, and maintains energy balance during subsequent challenge with unrelated pathogens. Bacteria-induced neuroprotection relied on activation of gut-projecting sympathetic neurons and signaling via ß2-adrenergic receptors (ß2AR) on MMs. In contrast, helminth-mediated neuroprotection was dependent on T cells and systemic production of interleukin (IL)-4 and IL-13 by eosinophils, which induced arginase-expressing MMs that prevented neuronal loss from an unrelated infection located in a different intestinal region. Collectively, these data suggest that distinct enteric pathogens trigger a state of disease or tissue tolerance that preserves ENS number and functionality.


Subject(s)
Enteric Nervous System/microbiology , Enteric Nervous System/parasitology , Infections/microbiology , Infections/parasitology , Neurons/pathology , Neuroprotection , Organ Specificity , Yersinia pseudotuberculosis/physiology , Animals , Eosinophils/metabolism , Hematopoietic Stem Cells/metabolism , Immunity , Infections/immunology , Interleukin-13/metabolism , Interleukin-4/metabolism , Macrophages/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Strongyloides/physiology , Strongyloidiasis/genetics , Strongyloidiasis/immunology , Strongyloidiasis/parasitology , Transcriptome/genetics , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis Infections/microbiology
2.
Cell ; 180(1): 64-78.e16, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31923400

ABSTRACT

Enteric-associated neurons (EANs) are closely associated with immune cells and continuously monitor and modulate homeostatic intestinal functions, including motility and nutrient sensing. Bidirectional interactions between neuronal and immune cells are altered during disease processes such as neurodegeneration or irritable bowel syndrome. We investigated the effects of infection-induced inflammation on intrinsic EANs (iEANs) and the role of intestinal muscularis macrophages (MMs) in this context. Using murine models of enteric infections, we observed long-term gastrointestinal symptoms, including reduced motility and loss of excitatory iEANs, which was mediated by a Nlrp6- and Casp11-dependent mechanism, depended on infection history, and could be reversed by manipulation of the microbiota. MMs responded to luminal infection by upregulating a neuroprotective program via ß2-adrenergic receptor (ß2-AR) signaling and mediated neuronal protection through an arginase 1-polyamine axis. Our results identify a mechanism of neuronal death post-infection and point to a role for tissue-resident MMs in limiting neuronal damage.


Subject(s)
Intestinal Mucosa/immunology , Macrophages/immunology , Receptors, Adrenergic, beta-2/metabolism , Adrenergic Agents , Animals , Arginase/metabolism , Caspases, Initiator/immunology , Caspases, Initiator/metabolism , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Female , Gastrointestinal Diseases , Gastrointestinal Microbiome , Infections , Inflammation/immunology , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Intestines/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Microbiota , Neurons/physiology , Receptors, Adrenergic, beta-2/immunology , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Signal Transduction
3.
Immunity ; 47(5): 848-861.e5, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29126798

ABSTRACT

CD4+ T cells optimize the cytotoxic T cell (CTL) response in magnitude and quality, by unknown molecular mechanisms. We here present the transcriptomic changes in CTLs resulting from CD4+ T cell help after anti-cancer vaccination or virus infection. The gene expression signatures revealed that CD4+ T cell help during priming optimized CTLs in expression of cytotoxic effector molecules and many other functions that ensured efficacy of CTLs throughout their life cycle. Key features included downregulation of PD-1 and other coinhibitory receptors that impede CTL activity, and increased motility and migration capacities. "Helped" CTLs acquired chemokine receptors that helped them reach their tumor target tissue and metalloprotease activity that enabled them to invade into tumor tissue. A very large part of the "help" program was instilled in CD8+ T cells via CD27 costimulation. The help program thus enhances specific CTL effector functions in response to vaccination or a virus infection.


Subject(s)
CD27 Ligand/physiology , CD4-Positive T-Lymphocytes/physiology , T-Lymphocytes, Cytotoxic/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/physiology , Animals , CX3C Chemokine Receptor 1/physiology , Cell Differentiation , Cell Movement , Down-Regulation , Mice , Mice, Inbred C57BL , Receptors, CXCR4/physiology
4.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32764145

ABSTRACT

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Female , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Male , Methyltransferases/metabolism , Mice
5.
J Immunol ; 204(8): 2110-2121, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32169846

ABSTRACT

Type I IFN is produced upon infection and tissue damage and induces the expression of many IFN-stimulated genes (ISGs) that encode host-protective proteins. ISG15 is a ubiquitin-like molecule that can be conjugated to proteins but is also released from cells in a free form. Free, extracellular ISG15 is suggested to have an immune-regulatory role, based on disease phenotypes of ISG15-deficient humans and mice. However, the underlying mechanisms by which free ISG15 would act as a "cytokine" are unclear and much debated. We, in this study, demonstrate in a clinically relevant mouse model of therapeutic vaccination that free ISG15 is an alarmin that induces tissue alert, characterized by extracellular matrix remodeling, myeloid cell infiltration, and inflammation. Moreover, free ISG15 is a potent adjuvant for the CTL response. ISG15 produced at the vaccination site promoted the vaccine-specific CTL response by enhancing expansion, short-lived effector and effector/memory differentiation of CD8+ T cells. The function of free ISG15 as an extracellular ligand was demonstrated, because the equivalents in murine ISG15 of 2 aa recently implicated in binding of human ISG15 to LFA-1 in vitro were required for its adjuvant effect in vivo. Moreover, in further agreement with the in vitro findings on human cells, free ISG15 boosted the CTL response in vivo via NK cells in the absence of CD4+ T cell help. Thus, free ISG15 is part of a newly recognized innate route to promote the CTL response.


Subject(s)
Cytokines/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , T-Lymphocytes, Cytotoxic/immunology , Adjuvants, Immunologic , Animals , Cell Line , Cytokines/deficiency , Cytokines/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ubiquitins/deficiency , Ubiquitins/genetics , Ubiquitins/immunology
6.
Immunology ; 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29700809

ABSTRACT

Cancer immunotherapy focuses mainly on anti-tumour activity of CD8+ cytotoxic T lymphocytes (CTLs). CTLs can directly kill all tumour cell types, provided they carry recognizable antigens. However, CD4+ T cells also play important roles in anti-tumour immunity. CD4+ T cells can either suppress or promote the anti-tumour CTL response, either in secondary lymphoid organs or in the tumour. In this review, we highlight opposing mechanisms of conventional and regulatory T cells at both sites. We outline how current cancer immunotherapy strategies affect both subsets and how selective modulation of each subset is important to maximize the clinical response of cancer patients.

7.
J Gen Virol ; 96(11): 3396-3410, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26315139

ABSTRACT

Murine leukaemia virus has been suggested to contribute to both autoimmune disease and leukaemia in the NZB mouse and in the (NZB × NZW) F1 (abbreviated B/W) mouse. However, with apparently only xenotropic but no ecotropic virus constitutively expressed in these mice, few mechanisms could explain the aetiology of either disease in either mouse strain. Because pseudotyped and/or inducible ecotropic virus may play a role, we surveyed the ability of murine leukaemia virus in NZB, NZW and B/W mice to infect and form a provirus. From the spleen of NZB mice, we isolated circular cDNA of xenotropic and polytropic virus, which indicates ongoing infection by these viruses. From a B/W lymphoma, we isolated and determined the complete sequence of a putative ecotropic NZW virus. From B/W mice, we recovered de novo endogenous retroviral integration sites (tags) from the hyperproliferating cells of the spleen and the peritoneum. The tagged genes seemed to be selected to aid cellular proliferation, as several of them are known cancer genes. The insertions are consistent with the idea that endogenous retrovirus contributes to B-cell hyperproliferation and progression to lymphoma in B/W mice.


Subject(s)
Autoimmune Diseases/veterinary , Endogenous Retroviruses/genetics , Leukemia Virus, Murine/genetics , Lymphoma/veterinary , Mice, Inbred NZB/virology , Rodent Diseases/virology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/virology , B-Lymphocytes/virology , Base Sequence , Endogenous Retroviruses/isolation & purification , Endogenous Retroviruses/physiology , Female , Leukemia Virus, Murine/isolation & purification , Leukemia Virus, Murine/physiology , Lymphoma/genetics , Lymphoma/virology , Male , Mice , Molecular Sequence Data , Mutagenesis, Insertional , Rodent Diseases/genetics
8.
Eur J Immunol ; 44(9): 2785-801, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24975032

ABSTRACT

Unless stimulated by a chronic inflammatory agent, such as mineral oil, plasma cell tumors are rare in young BALB/c mice. This raises the questions: What do inflammatory tissues provide to promote mutagenesis? And what is the nature of mutagenesis? We determined that mineral oil-induced plasmacytomas produce large amounts of endogenous retroelements--ecotropic and polytropic murine leukemia virus and intracisternal A particles. Therefore, plasmacytoma formation might occur, in part, by de novo insertion of these retroelements, induced or helped by the inflammation. We recovered up to ten de novo insertions in a single plasmacytoma, mostly in genes with common retroviral integration sites. Additional integrations accompany tumor evolution from a solid tumor through several generations in cell culture. The high frequency of de novo integrations into cancer genes suggests that endogenous retroelements are coresponsible for plasmacytoma formation and progression in BALB/c mice.


Subject(s)
Emollients/adverse effects , Mineral Oil/adverse effects , Mutagenesis, Insertional , Neoplasms, Experimental , Plasmacytoma , Retroelements , Animals , Cell Line , Emollients/pharmacology , Mice , Mice, Inbred BALB C , Mineral Oil/pharmacology , Mutagenesis, Insertional/drug effects , Mutagenesis, Insertional/immunology , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Plasmacytoma/chemically induced , Plasmacytoma/genetics , Plasmacytoma/immunology , Plasmacytoma/pathology
9.
J Transl Med ; 10: 226, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23157797

ABSTRACT

BACKGROUND: Breast cancers are phenotypically and genotypically heterogeneous tumors containing multiple cancer cell populations with various metastatic potential. Aggressive tumor cell subpopulations might more easily be captured in lymph nodes metastases (LNM) than in primary tumors (PT). We evaluated mRNA and protein levels of master EMT regulators: TWIST1, SNAIL and SLUG, protein levels of EMT-related markers: E-cadherin, vimentin, and expression of classical breast cancer receptors: HER2, ER and PgR in PT and corresponding LNM. The results were correlated with clinicopathological data and patients outcomes. METHODS: Formalin-fixed paraffin-embedded samples from PT and matched LNM from 42 stage II-III breast cancer patients were examined. Expression of TWIST1, SNAIL and SLUG was measured by reverse-transcription quantitative PCR. Protein expression was examined by immunohistochemistry on tissue microarrays. Kaplan-Meier curves for disease-free survival (DFS) and overall survival (OS) were compared using F-Cox test. Hazard ratios (HRs) with 95% confidence intervals (95% CI) were computed using Cox regression analysis. RESULTS: On average, mRNA expression of TWIST1, SNAIL and SLUG was significantly higher in LNM compared to PT (P < 0.00001 for all). Gene and protein levels of TWIST1, SNAIL and SLUG were highly discordant between PT and matched LNM. Increased mRNA expression of TWIST1 and SNAIL in LNM was associated with shorter OS (P = 0.04 and P = 0.02, respectively) and DFS (P = 0.02 and P = 0.01, respectively), whereas their expression in PT had no prognostic impact. Negative-to-positive switch of SNAIL protein correlated with decreased OS and DFS (HR = 4.6; 1.1-18.7; P = 0.03 and HR = 3.8; 1.0-48.7; P = 0.05, respectively). CONCLUSIONS: LNM are enriched in cells with more aggressive phenotype, marked by elevated levels of EMT regulators. High expression of TWIST1 and SNAIL in LNM, as well as negative-to-positive conversion of SNAIL confer worse prognosis, confirming the correlation of EMT with aggressive disease behavior. Thus, molecular profiling of LNM may be used as surrogate marker for aggressiveness and metastatic potential of PT.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Lymphatic Metastasis , Adult , Aged , Female , Humans , Immunohistochemistry , Middle Aged , Paraffin Embedding , Reverse Transcriptase Polymerase Chain Reaction , Tissue Array Analysis
10.
STAR Protoc ; 3(1): 101157, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35146454

ABSTRACT

The myenteric plexus is located between the longitudinal and circular layers of muscularis externa in the gastrointestinal tract. It contains a large network of enteric neurons that form the enteric nervous system (ENS) and control intestinal functions, such as motility and nutrient sensing. This protocol describes the method for physical separation (peeling) of muscularis and submucosal layers of the mouse intestine. Subsequently, the intestinal layers are then processed for flow cytometry and/or immunofluorescence analysis. For complete details on the use and execution of this profile, please refer to Ahrends et al. (2021).


Subject(s)
Gastrointestinal Tract/physiology , Myenteric Plexus/cytology , Submucous Plexus/cytology , Animals , Flow Cytometry/methods , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL
11.
Nat Commun ; 10(1): 5531, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797935

ABSTRACT

CD4+ T cell help is required for the generation of CD8+ cytotoxic T lymphocyte (CTL) memory. Here, we use genome-wide analyses to show how CD4+ T cell help delivered during priming promotes memory differentiation of CTLs. Help signals enhance IL-15-dependent maintenance of central memory T (TCM) cells. More importantly, help signals regulate the size and function of the effector memory T (TEM) cell pool. Helped TEM cells produce Granzyme B and IFNγ upon antigen-independent, innate-like recall by IL-12 and IL-18. In addition, helped memory CTLs express the effector program characteristic of helped primary CTLs upon recall with MHC class I-restricted antigens, likely due to epigenetic imprinting and sustained mRNA expression of effector genes. Our data thus indicate that during priming, CD4+ T cell help optimizes CTL memory by creating TEM cells with innate and help-independent antigen-specific recall capacities.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Vaccines, DNA/immunology , Animals , Cells, Cultured , Female , Granzymes/immunology , Granzymes/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Lymphocyte Activation/immunology , Male , Mice , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
12.
Nat Rev Immunol ; 18(10): 635-647, 2018 10.
Article in English | MEDLINE | ID: mdl-30057419

ABSTRACT

Cancer immunotherapy aims to promote the activity of cytotoxic T lymphocytes (CTLs) within a tumour, assist the priming of tumour-specific CTLs in lymphoid organs and establish efficient and durable antitumour immunity. During priming, help signals are relayed from CD4+ T cells to CD8+ T cells by specific dendritic cells to optimize the magnitude and quality of the CTL response. In this Review, we highlight the cellular dynamics and membrane receptors that mediate CD4+ T cell help and the molecular mechanisms of the enhanced antitumour activity of CTLs. We outline how deficient CD4+ T cell help reduces the response of CTLs and how maximizing CD4+ T cell help can improve outcomes in cancer immunotherapy strategies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Cytokines/immunology , Dendritic Cells/immunology , Humans , Lymphocyte Activation/immunology , Signal Transduction
13.
Cancer Immunol Res ; 6(7): 835-847, 2018 07.
Article in English | MEDLINE | ID: mdl-29764836

ABSTRACT

In a mouse model of therapeutic DNA vaccination, we studied how the subcellular localization of vaccine protein impacts antigen delivery to professional antigen-presenting cells and efficiency of CTL priming. Cytosolic, membrane-bound, nuclear, and secretory versions of ZsGreen fluorescent protein, conjugated to MHC class I and II ovalbumin (OVA) epitopes, were expressed in keratinocytes by DNA vaccination into the skin. ZsGreen-OVA versions reached B cells in the skin-draining lymph node (dLN) that proved irrelevant for CTL priming. ZsGreen-OVA versions were also actively transported to the dLN by dendritic cells (DC). In the dLN, vaccine proteins localized to classical (c)DCs of the migratory XCR1+ and XCR- subtypes, and-to a lesser extent-to LN-resident cDCs. Secretory ZsGreen-OVA induced the best antitumor CTL response, even though its delivery to cDCs in the dLN was significantly less efficient than for other vaccine proteins. Secretory ZsGreen-OVA protein proved superior in CTL priming, because it led to in vivo engagement of antigen-loaded XCR1+, but not XCR1-, cDCs. Secretory ZsGreen-OVA also maximally solicited CD4+ T-cell help. The suboptimal CTL response to the other ZsGreen-OVA versions was improved by engaging costimulatory receptor CD27, which mimics CD4+ T-cell help. Thus, in therapeutic DNA vaccination into the skin, mere inclusion of helper epitopes does not ensure delivery of CD4+ T-cell help for the CTL response. Targeting of the vaccine protein to the secretory route of keratinocytes is required to engage XCR1+ cDC and CD4+ T-cell help and thus to promote CTL priming. Cancer Immunol Res; 6(7); 835-47. ©2018 AACR.


Subject(s)
Antigens/immunology , Keratinocytes/immunology , Keratinocytes/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Vaccines, DNA/immunology , Animals , Antigens/administration & dosage , Biological Transport , Biomarkers , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Gene Expression , Genes, Reporter , Humans , Immunization , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , Models, Biological , Skin/immunology , Skin/metabolism , Vaccines, DNA/administration & dosage
14.
Cancer Res ; 76(10): 2921-31, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27020860

ABSTRACT

While showing promise, vaccination strategies to treat cancer require further optimization. Likely barriers to efficacy involve cancer-associated immunosuppression and peripheral tolerance, which limit the generation of effective vaccine-specific cytotoxic T lymphocytes (CTL). Because CD4(+) T cells improve CTL responsiveness, next-generation vaccines include helper epitopes. Here, we demonstrate in mice how CD4(+) T-cell help optimizes the CTL response to a clinically relevant DNA vaccine engineered to combat human papillomavirus-expressing tumors. Inclusion of tumor-unrelated helper epitopes greatly increased CTL priming, effector, and memory T-cell programming. CD4(+) T-cell help optimized the CTL response in all these aspects via CD27/CD70 costimulation. Notably, administration of an agonistic CD27 antibody could largely replace helper epitopes in promoting primary and memory CTL responses, acting directly on CD8(+) T cells. CD27 agonism improved efficacy of the vaccine without helper epitopes, more so than combined PD-1 and CTLA-4 blockade. Combining CD27 agonism with CTLA-4 blockade improved vaccine-induced CTL priming and tumor infiltration, but only combination with PD-1 blockade was effective at eradicating tumors, thereby fully recapitulating the effect of CD4(+) T-cell help on vaccine efficacy. PD-1 blockade alone did not affect CTL priming or tumor infiltration, so these results implied that it cooperated with CD4(+) T-cell help by alleviating immune suppression against CTL in the tumor. Helper epitope inclusion or CD27 agonism did not stimulate regulatory T cells, and vaccine efficacy was also improved by CD27 agonism in the presence of CD4(+) T-cell help. Our findings provide a preclinical rationale to apply CD27 agonist antibodies, either alone or combined with PD-1 blockade, to improve the therapeutic efficacy of cancer vaccines and immunotherapy generally. Cancer Res; 76(10); 2921-31. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Immunotherapy , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Necrosis Factor Receptor Superfamily, Member 7/agonists , Animals , Apoptosis , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cell Proliferation , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Cells, Cultured , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL