ABSTRACT
Objective of the study was to compare two commonly used anesthetic drugs, S-ketamine and etomidate, regarding their influence on seizure characteristics, safety aspects, and outcome of electroconvulsive therapy (ECT) in major depression. Treatment data of 60 patients who underwent a total number of 13 ECTs (median) because of the severe or treatment-resistant major depressive disorder (DSM-IV) were analyzed. Etomidate, mean dosage (SD) = 0.25 (0.04) mg/kg, was used for anesthesia in 29 participants; 31 patients received S-ketamine, mean dosage (SD) = 0.96 (0.26) mg/kg. Right unilateral brief pulse ECTs were performed. The number of ECTs was individually adjusted to clinical needs, mean (SD) = 13.0 (4.3). Seizure characteristics, adverse events, and the clinical global impression (CGI) scores were compared between the both groups during ECT series. In the S-ketamine group, a lower initial seizure threshold (p = 0.014), stimulation charge (p < 0.001), higher postictal suppression (p < 0.001), EEG ictal amplitude (p = 0.04), EEG coherence (p < 0.001) and maximum heart rate (p = 0.015) were measured. Etomidate was associated with more frequent abortive seizures (p = 0.02) and restimulations (p = 0.01). The CGI scores, the number of sessions within an ECT series, and the incidence of adverse events did not differ between groups. Due to its lower initial seizure threshold, S-ketamine might hold a potential to become a clinically favorable anesthetic agent during ECT. However, the current findings should be interpreted with caution, and further prospective randomized clinical trials are required. Also, specific adverse effects profile of S-ketamine, especially with regard to the cardiovascular risk, needs to be taken into account.
Subject(s)
Anesthetics, Intravenous/pharmacology , Depressive Disorder, Major/therapy , Depressive Disorder, Treatment-Resistant/therapy , Electroconvulsive Therapy/methods , Etomidate/pharmacology , Ketamine/pharmacology , Seizures/physiopathology , Aged , Anesthetics, Intravenous/administration & dosage , Etomidate/administration & dosage , Female , Humans , Ketamine/administration & dosage , Male , Middle AgedABSTRACT
Some of the advantages of retina organ culture models include their efficient and easy handling and the ability to standardise relevant parameters. Additionally, when porcine eyes are obtained from the food industry, no animals are killed solely for research purposes. To induce retinal degeneration, a commonly used toxic substance, N-methyl-D-aspartate (NMDA), was applied to the cultures. To this end, organotypic cultures of porcine retinas were cultured and treated with different doses of NMDA (0 [control], 50, 100 and 200µM) on day 2 for 48 hours. On day 7, the retinas were cryo-conserved for histological, Western blot and quantitative rt-PCR (qrt-PCR) analyses. NMDA treatment was found to significantly increase retinal ganglion cell (RGC) apoptosis in all the treated groups, without a profound RGC loss. In addition, the intrinsic apoptotic pathway was activated in the 50µM and 100µM NMDA groups, whereas induced nitric oxide synthase (iNOS) expression was increased in the 200µM group. A slight microglial response was detectable, especially in the 100µM group. NMDA treatment induced apoptosis, oxidative stress and a slight microglia activation. All these effects mimic a chronic slow progressive disease that especially affects RGCs, such as glaucoma. A particular advantage of this model is that mediators that can interact in the very early stages of the onset of RGC death, can be easily detected and potential therapies can be tested.