Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
Ecotoxicol Environ Saf ; 264: 115408, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37666203

ABSTRACT

Treatment of environmental media contaminated with per- and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC. Batch tests were conducted with natural soil and spiked water, using CAC at 0.2% w/w to remove seven PFAS with individual starting concentrations up to 0.05 mmol L-1. PFAS sorption to CAC was evaluated in three systems: a composite mixture of all studied compounds, a binary-solute system, and a single-solute system. The sorption experiments exhibited strong PFAS affinity to CAC, with removal rates between 41% and 100%, and solid/liquid partition coefficients (Kd) between 10 and 104 L kg-1. Differences were noticed among the various spiking mixtures, based on perfluorocarbon chain length, functional group, and the starting PFAS concentrations. Competition effects were detected when PFAS were in a multi-solute system, with an average 10% drop in removal, which can evidently become more relevant at higher concentrations, due to the observed non-linearity of the sorption process. The PFAS most vulnerable to competition effects in multi-solute systems were the short-chain perfluoropentanoic acid (PFPeA) and perfluorobutane sulfonic acid (PFBS), with an up to 25% reduction in removal. In bi-solute systems, perfluorooctane sulfonamide (FOSA) dominated over its ionisable counterparts, i.e. perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA), indicating the importance of hydrophobic effects or layer formation in the sorption process. These results underscore the importance of considering competition in PFAS sorption processes when designing and implementing remediation techniques for PFAS-contaminated media.


Subject(s)
Charcoal , Fluorocarbons , Environmental Pollution , Soil , Water
2.
Environ Sci Technol ; 56(9): 5456-5465, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35446578

ABSTRACT

Only a few dozens of the several thousand existing per- and polyfluoroalkyl substances (PFAS) are monitored using conventional target analysis. This study employed suspect screening to examine patterns of emerging and novel PFAS in German and Chinese river water affected by industrial point sources. In total, 86 PFAS were (tentatively) identified and grouped into 18 structure categories. Homologue patterns revealed distinct differences between fluoropolymer production sites of the two countries. In the Chinese Xiaoqing River Basin, the C8 homologue was the most prevalent compound of the emerging series of chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs) and perfluoroalkylether carboxylic acids (PFECAs). In contrast, C6 and shorter homologues were dominant in the German Alz River. This indicates that the phaseout of long-chain compounds in Europe and their ongoing production in Asian countries also apply to unregulated emerging PFAS classes. Additional characteristics to differentiate the point sources were the peak area ratio of perfluorobutane sulfonic acid (PFBS) versus the emerging compound hydro-substituted PFBS (H-PFBS) as well as the occurrence of byproducts of the sulfonated tetrafluoroethylene-based polymer Nafion. The large number of identified unregulated PFAS underlines the importance of a grouping approach on a regulatory level, whereas the revealed contamination patterns can be used to estimate, prioritize, and minimize contributions of specific sources.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Carboxylic Acids , China , Fluorocarbons/analysis , Rivers , Sulfonic Acids/analysis , Water Pollutants, Chemical/analysis
3.
J Environ Manage ; 313: 114997, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35395528

ABSTRACT

Anaerobic digestate based on food waste is increasingly used as fertilizer in food production. This study examined the characteristics of anaerobic digestate based on food waste from three biogas plants in Sweden. The characterization included measurements of heavy metals (n = 7), chemicals of emerging concern (CECs), such as currently used drugs and pesticides (n = 133), and an extended range of food-borne pathogens, including two notable sporeformers and some widespread antibiotic-resistant bacteria. The amounts of Escherichia coli, enterococci, and Salmonella and the concentrations of the target heavy metals were all below the maximum accepted levels at all three locations studied. However, the spore-forming Bacillus cereus was found to be present at high levels in samples from all three biogas plants. Among the 133 CECs investigated, 48 were detected at least once, and the highest concentrations were found for pyroxidine, nicotine, caffeine, theobromine, and nicotine. The biofertilizers from the different biogas plants had similar CEC profiles, which indicate similarities in household waste composition and thorough mixing in the biogas plants. If this profile is found to be spatially and temporally consistent, it can help regulators to establish priority lists of CECs of top concern. Assuming increasing use of biofertilizers for food production in the future, it would be beneficial to have concentration limits for CECs Risk estimation based on risk quotients (RQs) indicated generally low environmental risks associated with application of biofertilizer to soils for food crop production. However, the toxicity of CEC mixtures needs to be considered when estimating the risks from application of biofertilizers on agricultural land or in other production systems.


Subject(s)
Metals, Heavy , Refuse Disposal , Anaerobiosis , Biofuels , Food , Nicotine , Sewage/chemistry
4.
Environ Sci Technol ; 55(15): 10343-10353, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34291901

ABSTRACT

Pesticides are widespread anthropogenic chemicals and well-known environmental contaminants of concern. Much less is known about transformation products (TPs) of pesticides and their presence in the environment. We developed a novel suspect screening approach for not well-explored pesticides (n = 16) and pesticide TPs (n = 242) by integrating knowledge from national monitoring with high-resolution mass spectrometry data. Weekly time-integrated samples were collected in two Swedish agricultural streams using the novel Time-Integrating, MicroFlow, In-line Extraction (TIMFIE) sampler. The integration of national monitoring data in the screening approach increased the number of prioritized compounds approximately twofold (from 23 to 42). Ultimately, 11 pesticide TPs were confirmed by reference standards and 12 TPs were considered tentatively identified with varying levels of confidence. Semiquantification of the newly confirmed TPs indicated higher concentrations than their corresponding parent pesticides in some cases, which highlights concerns related to (unknown) pesticide TPs in the environment. Some TPs were present in the environment without co-occurrence of their corresponding parent compounds, indicating higher persistency or mobility of the identified TPs. This study showcased the benefits of integrating monitoring knowledge in this type of studies, with advantages for suspect screening performance and the possibility to increase relevance of future monitoring programs.


Subject(s)
Pesticides , Water Pollutants, Chemical , Agriculture , Environmental Monitoring , Pesticides/analysis , Water , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 55(12): 7900-7909, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34029071

ABSTRACT

Emergent aquatic insects are important food subsidies to riparian food webs but can also transfer waterborne contaminants to the terrestrial environment. This study aimed to quantitatively assess this biodriven transfer for per- and polyfluoroalkyl substances (PFAS). Aquatic insect larvae, emergent aquatic insects, terrestrial consumers, sediment, and water were collected from a contaminated lake and stream and an uncontaminated pond, and analyzed for PFAS and stable isotopes of carbon and nitrogen. Top predators in this study were spiders, which showed the highest average ∑24PFAS concentration of 1400 ± 80 ng g-1 dry weight (dw) at the lake and 630 ng g-1 dw at the stream. The transfer of PFAS from the lake to the riparian zone, via deposition of emergent aquatic insects, was 280 ng ∑24PFAS m-2 d-1 in 2017 and only 23 ng ∑24PFAS m-2 d-1 in 2018. Because of higher production of emergent aquatic insects, the lake had higher PFAS transfer and higher concentrations in terrestrial consumers compared to the stream, despite the stream having higher PFAS concentration in water and aquatic insect larvae. Our results indicate that biodriven transfer of PFAS from the aquatic systems and subsequent uptake in terrestrial food webs depend more on emergence amounts, i.e., aquatic prey availability, rather than on PFAS concentrations in water and aquatic prey.


Subject(s)
Insecta , Spiders , Animals , Carbon , Food Chain , Rivers
6.
Ecotoxicol Environ Saf ; 222: 112495, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34265536

ABSTRACT

The environment contains a multitude of man-made chemicals, some of which can act as endocrine disruptors (EDCs), while others can be immunotoxic. We evaluated thyroid disruption and immunotoxic effects in wild female perch (Perca fluviatilis) collected from two contaminated areas in Sweden; one site contaminated with per- and polyfluoroalkyl substances (PFASs) and two sites contaminated with polychlorinated biphenyls (PCBs), with one reference site included for each area. The hepatic mRNA expression of thyroid receptors α and ß, and the thyroid hormone metabolising iodothyronine deiodinases (dio1, dio2 and dio3) were measured using real-time PCR, while the levels of thyroid hormone T3 in plasma was analysed using a radioimmunoassay. In addition, lymphocytes, granulocytes, and thrombocytes were counted microscopically. Our results showed lower levels of T3 as well as lower amounts of lymphocytes and granulocytes in perch collected from the PFAS-contaminated site compared to reference sites. In addition, expressions of mRNA coding for thyroid hormone metabolising enzymes (dio2 and dio3) and thyroid receptor α (thra) were significantly different in these fish compared to their reference site. For perch collected at the two PCB-contaminated sites, there were no significant differences in T3 levels or in expression levels of the thyroid-related genes, compared to the reference fish. Fish from one of the PCB-contaminated sites had higher levels of thrombocytes compared with both the second PCB lake and their reference lake; hence PCBs are unlikely to be the cause of this effect. The current study suggests that lifelong exposure to PFASs could affect both the thyroid hormone status and immune defence of perch in the wild.


Subject(s)
Fluorocarbons , Perches , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Female , Humans , Lakes , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Thyroid Gland/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Environ Sci Technol ; 54(20): 12881-12889, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32924452

ABSTRACT

A retrospective analysis of a comprehensive series of high-volume air samples (n = 70) collected during 2010-2011 in Toronto (Canada) was performed. Seven UV compounds were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS) with sum of concentrations (gas + particle phase) ranging from 80 to 2030 pg/m3. Homosalate (HMS) was the most prevalent organic UV-filter in air (47% of the total concentration), followed by 2-ethylhexyl salicylate (EHS, ∼29%), E- and Z-2-ethylhexyl 4-methoxycinnamate (EHMC, ∼17%). Ambient air (gas + particle phase) concentrations of organic UV-filters showed a strong seasonality, with peak levels during the summer. An analysis of Clausius-Clapeyron slopes indicated that much of the ambient burden of organic UV-filters are explained by volatilization from terrestrial and aquatic surfaces and supplemented with human activities and use of lotions and sunscreens, containing organic UV-filters, in addition to its use in plastics, textiles, paints, and pesticides. The results showed that organic UV-filters exist mainly in the gas phase with some exceptions, for instance, octocrylene (OCR), which was associated with both gas and particle phases, and avobenzone (AVB), which was predominantly in the particle phase. Lastly, this study revealed the need for basic physical chemical property data for organic UV-filters, including information on transformation rates and products, for better evaluating their environmental fate and effects.


Subject(s)
Sunscreening Agents , Tandem Mass Spectrometry , Canada , Gas Chromatography-Mass Spectrometry , Humans , Retrospective Studies , Sunscreening Agents/analysis
8.
Environ Sci Technol ; 54(19): 11951-11960, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32870664

ABSTRACT

The occurrence of per- and polyfluoroalkyl substances (PFASs) in aquatic ecosystems is a global concern because of their persistence, potential bioaccumulation, and toxicity. In this study, we investigated a PFAS-contaminated pond in Sweden to assess the cross-boundary transfer of PFASs from the aquatic environment to the riparian zone via emergent aquatic insects. Aquatic and terrestrial invertebrates, surface water, sediments, soils, and plants were analyzed for 24 PFASs including branched isomers. Stable isotope analysis of carbon and nitrogen was performed to elucidate the importance of diet and trophic position for PFAS uptake. We present the first evidence that PFASs can propagate to the riparian food web via aquatic emergent insects. Elevated Σ24PFAS concentrations were found in aquatic insect larvae, such as dragon- and damselflies, ranging from 1100 to 4600 ng g-1 dry weight (dw), and remained high in emerged adults (120-3500 ng g-1 dw), indicating exposure risks for top predators that prey in riparian zones. In terrestrial invertebrate consumers, PFAS concentrations increased with the degree of aquatic-based diet and at higher trophic levels. Furthermore, stable isotope data together with calculated bioaccumulation factors indicated that bioconcentration of PFASs was the major pathway of exposure in the aquatic food web and bioaccumulation in the riparian food web.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Ecosystem , Fresh Water , Invertebrates , Sweden , Water Pollutants, Chemical/analysis
9.
Environ Sci Technol ; 54(24): 15722-15730, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33244971

ABSTRACT

An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.


Subject(s)
Fluorocarbons , Adsorption , Alkanesulfonates , Ferric Compounds
10.
Environ Sci Technol ; 53(19): 11447-11457, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31476116

ABSTRACT

We investigated associations between serum perfluoroalkyl acid (PFAA) concentrations in children aged 4, 8, and 12 years (sampled in 2008-2015; n = 57, 55, and 119, respectively) and exposure via placental transfer, breastfeeding, and ingestion of PFAA-contaminated drinking water. Sampling took place in Uppsala County, Sweden, where the drinking water has been historically contaminated with perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA). PFOS showed the highest median concentrations in serum (3.8-5.3 ng g-1 serum), followed by PFHxS (1.6-5.0 ng g-1 serum), PFOA (2.0-2.5 ng g-1 serum), and perfluorononanoate (PFNA) (0.59-0.69 ng g-1 serum) in children. Including all children, serum PFOA, PFHxS, and PFOS concentrations in children increased 10, 10, and 1.3% (adjusted mean), respectively, per unit (ng g-1 serum) of increase in the maternal serum level (at delivery), the associations being strongest for 4 year-old children. PFHxS and PFOS significantly increased 3.9 and 3.8%, respectively, per month of nursing, with the highest increase for 4 year-olds. PFOA, PFBS, PFHxS, and PFOS increased 1.2, 207, 7.4, and 0.93%, respectively, per month of cumulative drinking water exposure. Early life exposure to PFOA, PFHxS, and PFOS is an important determinant of serum concentrations in children, with the strongest influence on younger ages. Drinking water with low to moderate PFBS, PFHxS, PFOS, and PFOA contamination is an important source of exposure for children with background exposure from other sources.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Caprylates , Child , Child, Preschool , Drinking , Female , Humans , Pregnancy , Serum , Sweden , Water Pollution
11.
J Environ Manage ; 249: 109345, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31487666

ABSTRACT

The global problem of contamination of drinking water sources and the aquatic environment with per- and polyfluoroalkyl substances (PFASs) originating from highly contaminated soils is addressed in this study. For the first time, a colloidal activated carbon (AC) product (PlumeStop®) was systematically assessed for PFASs stabilization in soil. Colloidal (particle size 0.1-1.1 µm) AC has the advantage that field application is non-intrusive, comprising injection under high pressure in situ at PFAS-contaminated soil hotspots. In the assessment, 10 different soil mixtures with gradually increasing organic carbon and clay fractions were spiked with 18 different PFASs of varying perfluorocarbon chain length and four different functional groups and aged for one year. Equilibrium leaching tests showed that the ability of colloidal AC to increase sorption of PFASs to soil was highly dependent on PFAS perfluorocarbon chain length. The best treatment efficiency was observed for perfluorocarbon chain lengths 6-7 at which colloidal AC resulted in sorption of 81%, 85%, and 86% for perfluorooctanoate (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTSA) and perfluorohexane sulfonate, (PFHxS), respectively. Sorption of individual PFASs decreased significantly (p < 0.05) with increasing organic carbon content in soil treated with colloidal AC indicating stearic hindrance of the ACs pore structure. On the other hand, the sorption of the majority of PFASs increased significantly (p < 0.05) with increasing clay content in colloidal AC-treated soil, which can be explained by increase in surface area that colloidal AC can sorb to. Overall, the results indicate that the colloidal AC product tested can be useful in remediation approaches for certain PFASs under specific field conditions and PFAS contamination.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Charcoal , Clay , Soil
12.
J Environ Manage ; 246: 920-928, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31279249

ABSTRACT

A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31 MPs showed removal efficiency >90% by GAC with an average removal of 97 ±â€¯6%. Xylit and lignite were less efficient with an average removal of 80 ±â€¯28% and 68 ±â€¯29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12 ±â€¯27% and 14 ±â€¯2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Phosphorus , Waste Disposal, Fluid , Wastewater
13.
Environ Sci Technol ; 52(12): 6881-6894, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29782800

ABSTRACT

This study demonstrates that regulatory databases combined with the latest advances in high resolution mass spectrometry (HRMS) can be efficiently used to prioritize and identify new, potentially hazardous pollutants being discharged into the aquatic environment. Of the approximately 23000 chemicals registered in the database of the National Swedish Product Register, 160 potential organic micropollutants were prioritized through quantitative knowledge of market availability, quantity used, extent of use on the market, and predicted compartment-specific environmental exposure during usage. Advanced liquid chromatography (LC)-HRMS-based suspect screening strategies were used to search for the selected compounds in 24 h composite samples collected from the effluent of three major wastewater treatment plants (WWTPs) in Sweden. In total, 36 tentative identifications were successfully achieved, mostly for substances not previously considered by environmental scientists. Of these substances, 23 were further confirmed with reference standards, showing the efficiency of combining a systematic prioritization strategy based on a regulatory database and a suspect-screening approach. These findings show that close collaboration between scientists and regulatory authorities is a promising way forward for enhancing identification rates of emerging pollutants and expanding knowledge on the occurrence of potentially hazardous substances in the environment.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Mass Spectrometry , Sweden , Wastewater
14.
Environ Sci Technol ; 52(11): 6217-6225, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29685029

ABSTRACT

Concentrations of polycyclic aromatic compounds (PACs), including 19 polycyclic aromatic hydrocarbons (PAHs) and 15 PAH-derivatives (oxygenated and nitrogen heterocyclic PAHs), were measured in streams in a remote headwater catchment in northern Europe and in more urbanized, downstream areas. Sampling was conducted during 2014 to 2016 and included the main hydrological seasons (snow-free, snow-covered, and spring flood) at six sampling sites. Levels of the targeted PACs varied substantially over time and space and were up to 110-fold (on average 17-fold) and 7000-fold (on average 670-fold) higher for PAHs and PAH-derivatives, respectively, during spring flood compared with preceding snow-covered and snow-free seasons. Higher levels of ∑PACs were generally found in a headwater stream draining a mire than at an adjacent forested site, with up to 20 times and 150 times higher levels for ∑PAH and ∑PAH-derivatives, respectively. The particle-bound PAC levels were positively correlated to surface runoff in the mire stream (∑PAHs: p = 0.032; ∑PAH-derivatives: p = 0.040) but not in the corresponding forest stream, during snowmelt and winter base flow. In more urbanized downstream areas, particle-bound PACs were instead strongly associated with suspended particulate matter ( p < 0.05; ∑PAHs and ∑PAH-derivatives except one site). Levels of ∑PACs in the streamwater were on average 3-fold higher downstream of the most densely populated area than at the outlet of the headwater catchment. The higher PAC levels in the downstream water compared to the remote headwater were clearer when normalized to SPM amounts (instead of water volume), with a gradual downstream trend between the sites.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Environmental Monitoring , Europe , Floods , Seasons
15.
Environ Sci Technol ; 52(7): 4340-4349, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29527894

ABSTRACT

The aim of this study was to assess per- and polyfluoroalkyl substances (PFASs) in the Swedish aquatic environment, identify emission sources, and compare measured concentrations with environmental quality standards (EQS) and (drinking) water guideline values. In total, 493 samples were analyzed in 2015 for 26 PFASs (∑26PFASs) in surface water, groundwater, landfill leachate, sewage treatment plant effluents and reference lakes, focusing on hot spots and drinking water sources. Highest ∑26PFAS concentrations were detected in surface water (13 000 ng L-1) and groundwater (6400 ng L-1). The dominating fraction of PFASs in surface water were perfluoroalkyl carboxylates (PFCAs; 64% of ∑26PFASs), with high contributions from C4-C8 PFCAs (94% of ∑PFCAs), indicating high mobility of shorter chain PFCAs. In inland surface water, the annual average (AA)-EQS of the EU Water Framework Directive of 0.65 ng L-1 for ∑PFOS (linear and branched isomers) was exceeded in 46% of the samples. The drinking water guideline value of 90 ng L-1 for ∑11PFASs recommended by the Swedish EPA was exceeded in 3% of the water samples from drinking water sources ( n = 169). The branched isomers had a noticeable fraction in surface- and groundwater for perfluorooctanesulfonamide, perfluorohexanesulfonate, and perfluorooctanesulfonate, highlighting the need to include branched isomers in future guidelines.


Subject(s)
Drinking Water , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Carboxylic Acids , Environmental Monitoring , Sweden
16.
Environ Sci Technol ; 52(12): 7101-7110, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29758986

ABSTRACT

Little is known about factors influencing infant perfluorinated alkyl acid (PFAA) concentrations. Associations between serum PFAA concentrations in 2-4-month-old infants ( n = 101) and determinants were investigated by multiple linear regression and general linear model analysis. In exclusively breast-fed infants, maternal serum PFAA concentrations 3 weeks after delivery explained 13% (perfluoroundecanoic acid, PFUnDA) to 73% (perfluorohexanesulfonate, PFHxS) of infant PFAA concentration variation. Median infant/maternal ratios decreased with increasing PFAA carbon chain length from 2.8 for perfluoroheptanoic acid and perfluorooctanoic acid (PFOA) to 0.53 for PFUnDA and from 1.2 to 0.69 for PFHxS and perfluorooctanesulfonate (PFOS). Infant PFOA, perfluorononanoic acid (PFNA), and PFOS levels increased 0.7-1.2% per day of gestational age. Bottle-fed infants had mean concentrations of PFAAs 2 times lower than and a mean percentage of branched (%br) PFOS isomers 1.3 times higher than those of exclusively breast-fed infants. PFOA, PFNA, and PFHxS levels increased 8-11% per week of exclusive breast-feeding. Infants living in an area receiving PFAA-contaminated drinking water had 3-fold higher mean perfluorobutanesulfonate (PFBS) and PFHxS concentrations and higher mean %br PFHxS. Prenatal PFAA exposure and postnatal PFAA exposure significantly contribute to infant PFAA serum concentrations, depending on PFAA carbon chain length. Moderately PFBS- and PFHxS-contaminated drinking water is an important indirect exposure source.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Breast Feeding , Caprylates , Drinking , Female , Gestational Age , Humans , Infant , Pregnancy
17.
J Appl Toxicol ; 38(2): 219-226, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28857218

ABSTRACT

Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target for perfluoroalkyl substances (PFASs). Little is known about the cellular uptake of PFASs and how it affects the PPARα activity. We investigated the relationship between PPARα activity and cellular concentration in HepG2 cells of 14 PFASs, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates and perfluorooctane sulfonamide (FOSA). Cellular concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and PPARα activity was determined in transiently transfected cells by reporter gene assay. Cellular uptake of the PFASs was low (0.04-4.1%) with absolute cellular concentrations in the range 4-2500 ng mg-1 protein. Cellular concentration of PFCAs increased with perfluorocarbon chain length up to perfluorododecanoate. PPARα activity of PFCAs increased with chain length up to perfluorooctanoate. The maximum induction of PPARα activity was similar for short-chain (perfluorobutanoate and perfluoropentanoate) and long-chain PFCAs (perfluorododecanoate and perfluorotetradecanoate) (approximately twofold). However, PPARα activities were induced at lower cellular concentrations for the short-chain homologs compared to the long-chain homologs. Perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate (PFNA) and perfluorodecanoate induced PPARα activities >2.5-fold compared to controls. The concentration-response relationships were positive for all the tested compounds, except perfluorooctane sulfonate PFOS and FOSA, and were compound-specific, as demonstrated by differences in the estimated slopes. The relationships were steeper for PFCAs with chain lengths up to and including PFNA than for the other studied PFASs. To our knowledge, this is the first report establishing relationships between PPARα activity and cellular concentration of a broad range of PFASs.


Subject(s)
Fluorocarbons/analysis , Fluorocarbons/toxicity , PPAR alpha/metabolism , Sulfonamides/analysis , Sulfonamides/toxicity , Carboxylic Acids/analysis , Carboxylic Acids/toxicity , Cell Culture Techniques , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fluorocarbons/chemistry , Hep G2 Cells , Humans , Structure-Activity Relationship , Sulfonamides/chemistry
18.
Environ Sci Technol ; 51(21): 12602-12610, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28972370

ABSTRACT

Fire training facilities and other areas suffer from serious per- and polyfluoroalkyl substance (PFAS) contamination in soil, surface water, and groundwater due to regular practices with PFAS-containing aqueous firefighting foams (AFFFs). Therefore, the uptake of 26 PFASs in plants and the contamination of soil and groundwater has been investigated at a fire training site at Stockholm Arlanda airport, Stockholm (Sweden) in 2016. Elevated ∑26PFAS levels were detected in soil and groundwater ranging from 16 to 160 ng g-1 dry weight (dw) and 1200-34 000 ng L-1, respectively. Samples from different plant species and tissues (i.e., roots, trunk/cores, twigs, leaves/needles) of the local plant community were taken, namely silver birch (Betula pendula), Norway spruce (Picea abies), bird cherry (Prunus padus), mountain ash (Sorbus aucuparia), ground elder (Aegopodium podagraria), long beechfern (Phegopteris connectilis), and wild strawberry (Fragaria vesca). The plants showed a high variability of concentrations with highest ∑26PFAS concentrations in vegetative compartments with up to 97 ng g-1 wet weight (ww) and 94 ng g-1 ww in birch leaves and spruce needles, respectively. Annual ground cover plants such as long beechfern and ground elder, and bushes like bird cherry showed concentrations up to 6.9, 23, and 21 ng g-1 ww, respectively. The bioconcentration factors (BCFs; plant/soil ratios) were highest in foliage, while the total tree burden of ∑26PFASs per tree was up to 11 mg for birch and 1.8 mg for spruce. Considering a shelterwood system with mixed stands of silver birch and spruce in combination with regular harvest of leaves and birch sap and an understory of ground elder, it is potentially feasible to remove 1.4 g of ∑26PFASs per year and hectare from (heavily) contaminated sites. An alternative approach is the coppicing of birch trees in combination with an understory of ground elder, potentially removing 0.65 g yr-1 ha-1 of ∑26PFASs, while a simple meadow with ground elder can remove 0.55 g yr-1 ha-1 ∑26PFASs.


Subject(s)
Betula , Biodegradation, Environmental , Picea , Norway , Plant Leaves , Sweden , Trees
19.
Environ Res ; 159: 95-102, 2017 11.
Article in English | MEDLINE | ID: mdl-28780137

ABSTRACT

BACKGROUND: In 2012, drinking water contaminated with per- and polyfluoroalkyl substances (PFASs), foremost perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) at levels over 20ng/L and 40ng/L, respectively, was confirmed in Uppsala, Sweden. OBJECTIVES: We assessed how a longitudinally sampled cohort's temporal trend in PFAS plasma concentration was influenced by their residential location and determined the plausible association or disparity between the PFASs detected in the drinking water and the trend in the study cohort. METHODS: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort provided plasma samples three times from 2001 to 2014. Individuals maintaining the same zip code throughout the study (n = 399) were divided into a reference (no known PFAS exposure), low, intermediate and high exposure area depending on the proportion of contaminated drinking water received. Eight PFASs detected in the majority (75%) of the cohort's plasma samples were evaluated for significant changes in temporal PFAS concentrations using a random effects (mixed) model. RESULTS: PFHxS plasma concentrations continued to significantly increase in individuals living in areas receiving the largest percentage of contaminated drinking water (p < 0.0001), while PFOS showed an overall decrease. The temporal trend of other PFAS plasma concentrations did not show an association to the quality of drinking water received. CONCLUSIONS: The distribution of contaminated drinking water had a direct effect on the trend in PFHxS plasma levels among the different exposure groups, resulting in increased concentrations over time, especially in the intermediate and high exposure areas. PFOS and the remaining PFASs did not show the same relationship, suggesting other sources of exposure influenced these PFAS plasma trends.


Subject(s)
Alkanesulfonic Acids/blood , Drinking Water/analysis , Fluorocarbons/blood , Sulfonic Acids/blood , Water Pollutants, Chemical/blood , Aged , Alkanesulfonic Acids/analysis , Cities , Cross-Sectional Studies , Female , Fluorocarbons/analysis , Humans , Longitudinal Studies , Male , Residence Characteristics , Sulfonic Acids/analysis , Sweden , Water Pollutants, Chemical/analysis
20.
Environ Sci Technol ; 50(1): 3-17, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26619247

ABSTRACT

We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.


Subject(s)
Environmental Monitoring/methods , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Biota , Geologic Sediments/chemistry , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL