Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34672953

ABSTRACT

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Subject(s)
Gene Expression Regulation , Gene Silencing , Genes, Mitochondrial , Electron Transport , Electron Transport Complex IV/genetics , HEK293 Cells , Humans , Mitochondrial Proteins/metabolism , Oligonucleotides/chemistry , Oxidative Phosphorylation , Protein Biosynthesis , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Mitochondrial/metabolism , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism
2.
J Neuroinflammation ; 21(1): 62, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419079

ABSTRACT

BACKGROUND: Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson's disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB). FINDINGS: The present study aims to evaluate the patho-physiological impact of α-syn AAbs on primary brain cells, i.e., on spontaneously active neurons and on astrocytes. Exposure of neuron-astrocyte co-cultures to human serum containing α-syn AAbs mediated a dose-dependent reduction of spontaneous neuronal activity, and subsequent neurodegeneration. Removal specifically of α-syn AAbs from the serum prevented neurotoxicity, while purified, commercial antibodies against α-syn mimicked the neurodegenerative effect. Mechanistically, we found a strong calcium flux into neurons preceding α-syn AAbs-induced cell death, specifically through NMDA receptors. NMDA receptor antagonists prevented neurodegeneration upon treatment with α-syn (auto)antibodies. α-syn (auto)antibodies did not affect astrocyte survival. However, in presence of α-syn, astrocytes reacted to α-syn antibodies by secretion of the chemokine RANTES. CONCLUSION: These findings provide a novel basis to explain how a combination of BBB impairment and infiltration of IgGs targeting synuclein may contribute to neurodegeneration in PD and argue for caution with α-syn immunization therapies for treatment of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Parkinson Disease/metabolism , Brain/metabolism , Neurons/metabolism , Immunoglobulins/metabolism
3.
Hum Mol Genet ; 27(23): 4135-4144, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30452684

ABSTRACT

Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.


Subject(s)
Carrier Proteins/genetics , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Myopathies/genetics , Child , DNA, Mitochondrial/genetics , Female , Fibroblasts/metabolism , Genetic Predisposition to Disease , Humans , Lactic Acid/cerebrospinal fluid , Membrane Transport Proteins/genetics , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Mitochondrial Myopathies/cerebrospinal fluid , Mitochondrial Myopathies/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Exome Sequencing
4.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 323-333, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29154948

ABSTRACT

The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.


Subject(s)
Electron Transport Complex IV/metabolism , Membrane Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Electron Transport Complex IV/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Mitochondrial Proteins/genetics
5.
Biol Open ; 12(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36861685

ABSTRACT

Mitochondrial defects are associated with aging processes and age-related diseases, including cardiovascular diseases, neurodegenerative diseases and cancer. In addition, some recent studies suggest mild mitochondrial dysfunctions appear to be associated with longer lifespans. In this context, liver tissue is considered to be largely resilient to aging and mitochondrial dysfunction. Yet, in recent years studies report dysregulation of mitochondrial function and nutrient sensing pathways in ageing livers. Therefore, we analyzed the effects of the aging process on mitochondrial gene expression in liver using wildtype C57BL/6N mice. In our analyses, we observed alteration in mitochondrial energy metabolism with age. To assess if defects in mitochondrial gene expression are linked to this decline, we applied a Nanopore sequencing based approach for mitochondrial transcriptomics. Our analyses show that a decrease of the Cox1 transcript correlates with reduced respiratory complex IV activity in older mice livers.


Subject(s)
Aging , Liver , Mice , Animals , Mice, Inbred C57BL , Aging/genetics , Gene Expression , Gene Expression Profiling
6.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37533404

ABSTRACT

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Subject(s)
Barth Syndrome , Mice , Animals , Barth Syndrome/metabolism , Barth Syndrome/pathology , Cardiolipins/metabolism , AMP-Activated Protein Kinases/metabolism , Glycolysis , Fatty Acids/metabolism , Adenosine Triphosphate
7.
Front Cell Dev Biol ; 10: 796066, 2022.
Article in English | MEDLINE | ID: mdl-35223833

ABSTRACT

Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.

8.
Nat Commun ; 12(1): 6530, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764281

ABSTRACT

Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.


Subject(s)
Endoribonucleases/metabolism , Leukoencephalopathies/metabolism , Leukoencephalopathies/pathology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Disease Models, Animal , Endoribonucleases/genetics , Female , Flow Cytometry , Genotype , Humans , Immunohistochemistry , Leukoencephalopathies/genetics , Magnetic Resonance Imaging , Male , Memory T Cells/metabolism , Mice , Mice, Knockout , Neuroglia/metabolism , Real-Time Polymerase Chain Reaction
9.
Nat Commun ; 12(1): 4284, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257281

ABSTRACT

The translocase of the outer mitochondrial membrane TOM constitutes the organellar entry gate for nearly all precursor proteins synthesized on cytosolic ribosomes. Thus, TOM presents the ideal target to adjust the mitochondrial proteome upon changing cellular demands. Here, we identify that the import receptor TOM70 is targeted by the kinase DYRK1A and that this modification plays a critical role in the activation of the carrier import pathway. Phosphorylation of TOM70Ser91 by DYRK1A stimulates interaction of TOM70 with the core TOM translocase. This enables transfer of receptor-bound precursors to the translocation pore and initiates their import. Consequently, loss of TOM70Ser91 phosphorylation results in a strong decrease in import capacity of metabolite carriers. Inhibition of DYRK1A impairs mitochondrial structure and function and elicits a protective transcriptional response to maintain a functional import machinery. The DYRK1A-TOM70 axis will enable insights into disease mechanisms caused by dysfunctional DYRK1A, including autism spectrum disorder, microcephaly and Down syndrome.


Subject(s)
Autism Spectrum Disorder/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Autism Spectrum Disorder/genetics , Cytosol/metabolism , Down Syndrome/genetics , Down Syndrome/metabolism , Humans , Microcephaly/genetics , Microcephaly/metabolism , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Dyrk Kinases
10.
J Mol Biol ; 432(7): 2067-2079, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32061935

ABSTRACT

The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.


Subject(s)
Carrier Proteins/metabolism , Copper/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Sulfhydryl Compounds/chemistry , Carrier Proteins/genetics , Electron Transport , Electron Transport Chain Complex Proteins/genetics , HEK293 Cells , Humans , Metallochaperones , Mitochondria/genetics , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Mutation , Protein Transport
11.
J Mol Med (Berl) ; 97(2): 269-279, 2019 02.
Article in English | MEDLINE | ID: mdl-30604168

ABSTRACT

The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function. KEY MESSAGES: Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells. Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects. Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin. Altered metabolism of amino acids might be involved in the pathomechanism of BTSH.


Subject(s)
Acyltransferases/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transaminases/genetics , Barth Syndrome/genetics , Gene Deletion , Humans , Mitochondria/genetics , Saccharomyces cerevisiae/growth & development , Transcription Factors/genetics , Up-Regulation
12.
J Cell Biol ; 218(2): 598-614, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30598479

ABSTRACT

The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Metalloendopeptidases/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Protein Transport/physiology , Saccharomyces cerevisiae
13.
Elife ; 72018 01 30.
Article in English | MEDLINE | ID: mdl-29381136

ABSTRACT

Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Protein Processing, Post-Translational , Carrier Proteins/metabolism , Cyclooxygenase 1/metabolism , HEK293 Cells , Humans , Molecular Chaperones , Protein Binding , Protein Multimerization
14.
Cell Rep ; 25(3): 561-570.e6, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332638

ABSTRACT

Mitochondria fulfill vital metabolic functions and act as crucial cellular signaling hubs, integrating their metabolic status into the cellular context. Here, we show that defective cardiolipin remodeling, upon loss of the cardiolipin acyl transferase tafazzin, decreases HIF-1α signaling in hypoxia. Tafazzin deficiency does not affect posttranslational HIF-1α regulation but rather HIF-1α gene expression, a dysfunction recapitulated in iPSC-derived cardiomyocytes from Barth syndrome patients with tafazzin deficiency. RNA-seq analyses confirmed drastically altered signaling in tafazzin mutant cells. In hypoxia, tafazzin-deficient cells display reduced production of reactive oxygen species (ROS) perturbing NF-κB activation and concomitantly HIF-1α gene expression. Tafazzin-deficient mice hearts display reduced HIF-1α levels and undergo maladaptive hypertrophy with heart failure in response to pressure overload challenge. We conclude that defective mitochondrial cardiolipin remodeling dampens HIF-1α signaling due to a lack of NF-κB activation through reduced mitochondrial ROS production, decreasing HIF-1α transcription.


Subject(s)
Barth Syndrome/pathology , Cardiolipins/metabolism , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/pathology , Mitochondria/pathology , Transcription Factors/physiology , Acyltransferases , Animals , Barth Syndrome/genetics , Barth Syndrome/metabolism , Biomarkers/metabolism , Cardiolipins/genetics , Cells, Cultured , High-Throughput Nucleotide Sequencing , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Mol Cell Biol ; 33(22): 4579-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24043313

ABSTRACT

Lower eukaryotes like the kinetoplastid parasites are good models to study evolution of cellular pathways during steps to eukaryogenesis. In this study, a kinetoplastid parasite, Leishmania donovani, was used to understand the process of mitochondrial translocation of a nucleus-encoded mitochondrial protein, the mitochondrial tryparedoxin peroxidase (mTXNPx). We report the presence of an N-terminal cleavable mitochondrial targeting signal (MTS) validated through deletion and grafting experiments. We also establish a novel finding of calmodulin (CaM) binding to the MTS of mTXNPx through specific residues. Mutation of CaM binding residues, keeping intact the residues involved in mitochondrial targeting and biochemical inhibition of CaM activity both in vitro and in vivo, prevented mitochondrial translocation. Through reconstituted import assays, we demonstrate obstruction of mitochondrial translocation either in the absence of CaM or Ca(2+) or in the presence of CaM inhibitors. We also demonstrate the prevention of temperature-driven mTXNPx aggregation in the presence of CaM. These findings establish the idea that CaM is required for the transport of the protein to mitochondria through maintenance of translocation competence posttranslation.


Subject(s)
Calmodulin/metabolism , Leishmania donovani/metabolism , Mitochondria/metabolism , Peroxidases/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Binding Sites , Humans , Leishmania donovani/chemistry , Leishmania donovani/genetics , Leishmaniasis, Visceral/parasitology , Molecular Sequence Data , Mutation , Peroxidases/analysis , Peroxidases/genetics , Protein Sorting Signals , Protein Transport , Protozoan Proteins/analysis , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL