ABSTRACT
Despite advances in cancer treatment, hepatocellular carcinoma (HCC), the most common form of liver cancer, remains a major public health problem worldwide. The immune microenvironment plays a critical role in regulating tumor progression and resistance to therapy, and in HCC, the tumor microenvironment (TME) is characterized by an abundance of immunosuppressive cells and signals that facilitate immune evasion and metastasis. Recently, anti-cancer immunotherapies, therapeutic interventions designed to modulate the immune system to recognize and eliminate cancer, have become an important cornerstone of cancer therapy. Immunotherapy has demonstrated the ability to improve survival and provide durable cancer control in certain groups of HCC patients, while reducing adverse side effects. These findings represent a significant step toward improving cancer treatment outcomes. As demonstrated in clinical trials, the administration of immune checkpoint inhibitors (ICIs), particularly in combination with anti-angiogenic agents and tyrosine kinase inhibitors, has prolonged survival in a subset of patients with HCC, providing an alternative for patients who progress on first-line therapy. In this review, we aimed to provide an overview of HCC and the role of the immune system in its development, and to summarize the findings of clinical trials involving ICIs, either as monotherapies or in combination with other agents in the treatment of the disease. Challenges and considerations regarding the administration of ICIs in the treatment of HCC are also outlined.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/drug therapy , Immunotherapy , Angiogenesis Inhibitors , Tumor MicroenvironmentABSTRACT
BACKGROUND/AIM: Lung transplantation is a life-saving procedure for patients with end-stage lung diseases. T-Cell receptor excision circle (TREC) is circular DNA produced during T-cell receptor gene rearrangement in the thymus and indicates naive T-cell migration from the thymus. Therefore, its levels represent thymic T-cell output. Post-transplant lymphocyte kinetics correlate with graft tolerance. The aim of this study was to investigate T-lymphocyte kinetics in the early recovery period after lung transplantation. For this purpose, copy numbers of TREC were determined in patients with a lung transplant. In addition, TREC copy numbers were evaluated according to age, diagnosis and the forced expiratory volume in 1 second (FEV1) of lung transplant patients. MATERIALS AND METHODS: Peripheral blood samples were taken from patients aged 23 to 59 years who underwent lung transplantation at the Thoracic Surgery Clinic, Kartal-Kosuyolu High Specialization Educational and Research Hospital. This study included peripheral blood samples from 11 lung transplant patients (comprising four with chronic obstructive pulmonary disease, three with idiopathic pulmonary fibrosis, one with cystic fibrosis, one with silicosis and two with bronchiectasis; three females in total). Samples were taken at three different timepoints: Before transplant, and 24 hours and 7 days post transplant. TREC copy numbers were analyzed with real time reverse transcriptase-polymerase chain reaction. RESULTS: Post-transplant TREC numbers and density values were higher compared to pre-transplant values, although these differences were statistically insignificant. TREC copy numbers were found to be significantly higher in patients younger than 45 years compared to patients older than 45 years. At 24 hours after the transplant, the average TREC copy number/peripheral blood mononuclear cells of the cases with an FEV1 value of or below 50% was found to be statistically significantly higher than that of cases with an FEV1 value above 50% (p=0.046). There was no statistically significant difference in TREC copy numbers between male and female patients or by diagnostic group. CONCLUSION: TREC copy numbers can be evaluated as a prognostic marker for lung transplantation. There is a need for multicenter studies with more patients.
Subject(s)
Lung Transplantation , T-Lymphocytes , Humans , Male , Female , Gene Rearrangement, T-Lymphocyte , Leukocytes, Mononuclear , DNA Copy Number Variations , Thymus Gland , Receptors, Antigen, T-CellABSTRACT
Capsaicin is a natural product which is extracted from pepper and has the potential to be used in cancer treatment because of its anti- proliferative effects. The aim of the study was to determine the effect of capsaicin on the hepatocellular carcinoma cell proliferation and the expressions of related genetic markers as Ki-67, PI3K/AKT/mTOR and epigenetic markers as miR-126 and piR-Hep-1. The inhibitory concentration of capsaicin in HepG2 cells was determined. piR-Hep-1 and miR-126 expressions and Ki-67, PI3K, AKT and mTOR gene expressions were examined by RT-PCR. The inhibitory concentration of capsaicin for HepG2 cells was 200 nM and the decreased proliferation was observed at 24th hour. As epigenetic markers, an up regulation of miR-126 and down regulation of piR-Hep-1 expression were determined after treatment. Moreover, Ki-67, PI3K and mTOR gene expressions decreased while AKT gene expression increased after the treatment (p<0.001). According to the obtained data, capsaicin has an impact on proliferation both genetically and epigenetically. Furthermore, treatment of capsaicin effects miR-126 and piR-Hep-1 expressions which effect carcinogenesis in different way. Moreover, there are some clues which indicate that these two small non-coding RNA might affect each other and share the same target molecules post-transcriptionally.
ABSTRACT
Background: This study aims to evaluate humoral immune system response by measuring copy numbers of kappa-deleting recombination excision circles (KREC) gene segment from B lymphocytes in patients with lung transplantation. Methods: Between September 2015 and November 2016, a total of 11 patients (8 males, 3 females; mean age: 45.4±12.0 years; range, 23 to 59 years) who underwent lung transplantation with different primary indications were included. The copy numbers of KREC gene segment were quantified using real-time polymerase chain reaction method in peripheral blood samples collected pre- and post-transplantation. The samples of the patients were compared with the KREC l evels i n deoxyribonucleic acid extracted from blood samples of healthy children. Results: There was no significant change in KREC levels between pre- and post-operation (p=0.594 and p=0.657), although the median values indicated that the highest increase in the KREC levels (7x105- 12x105; 85-170) was on Day 7 of transplantation. There was a positive correlation between the KREC levels (mL in blood) and lymphocytes at 24 h after transplantation (p=0.043) and between KREC copies per 106 of blood and age on Day 7. Conclusion: Our preliminary results suggest that KREC l evels a s an indicator of B lymphocyte production are elevated after lung transplantation. A prognostic algorithm by tracking B cell kinetics after post-transplantation for long-term follow-up can be developed following the confirmation of these preliminary results with more patient samples.
ABSTRACT
Organoids and spheroids, three-dimensional growing structures in cell culture labs, are becoming increasingly recognized as superior models compared to two-dimensional culture models, since they mimic the human body better and have advantages over animal studies. However, these studies commonly face problems with reproducibility and consistency. During the long experimental processes - with transfers of organoids and spheroids between different cell culture vessels, pipetting, and centrifuging - these susceptible and fragile 3D growing structures are often damaged or lost. Ultimately, the results are significantly affected, since the 3D structures cannot maintain the same characteristics and quality. The methods described here minimize these stressful steps and ensure a safe and consistent environment for organoids and spheroids throughout the processing sequence while they are still in a hydrogel in a multipurpose device. The researchers can grow, freeze, thaw, process, stain, label, and then examine the structure of organoids or spheroids under various high-tech instruments, from confocal to electron microscopes, using a single multipurpose device. This technology improves the studies' reproducibility, reliability, and validity, while maintaining a stable and protective environment for the 3D growing structures during processing. In addition, eliminating stressful steps minimizes handling errors, reduces time taken, and decreases the risk of contamination.
Subject(s)
Hydrogels , Spheroids, Cellular , Animals , Humans , Reproducibility of Results , Freezing , OrganoidsABSTRACT
Cisplatin, the first platinum compound approved for cancer treatment, is widely used in the treatment of various cancers including hepatocellular carcinoma (HCC). HCC incidence rates rise globally. Epithelial mesenchymal transition (EMT) is implicated in cancer invasion and metastasis, which are associated with increased mortality. Cisplatin dose might influence cancer invasion and metastatic behavior of the cells. The aim of the study was to investigate the effect of low-dose cisplatin treatment on EMT- related changes in HepG2 cells. Following treatment with 4 µM cisplatin, HepG2 cells were evaluated morphologically. Gene expression of E-cadherin, Vimentin, Snail1 was assessed by quantitative PCR. Immunofluorescence analyses of NA-K ATPase were performed. Although the low-dose cisplatin treated cells exhibited a more stretched morphology, no statistical difference was detected in gene expression of E-cadherin, Vimentin, Snail1 and immunofluorescence of NA-K ATPase. Findings on low-dose cisplatin effects in HepG2 might contribute to the knowledge of antineoplastic inefficacy by further understanding the molecular mechanisms of drug action.
El cisplatino, el primer compuesto de platino aprobado para el tratamiento del cáncer, es ampliamente utilizado en el tratamiento de varios tipos de cáncer, incluido el carcinoma hepatocelular (CHC). Las tasas de incidencia de CHC aumentan a nivel mundial. La transición mesenquimal epitelial (EMT) está implicada en la invasión del cáncer y la metástasis, que se asocian con un aumento de la mortalidad. La dosis de cisplatino podría influir en la invasión del cáncer y el comportamiento metastásico de las células. El objetivo del estudio fue investigar el efecto del tratamiento con dosis bajas de cisplatino en los cambios relacionados con la EMT en las células HepG2. Tras el tratamiento con cisplatino de 4 µM, se evaluaron morfológicamente las células HepG2. La expresión génica de E-cadherina, vimentina, caracol1 se evaluó mediante PCR cuantitativa. Se realizaron análisis de inmunofluorescencia de NA-K ATPasa . Aunque las células tratadas con cisplatino en dosis bajas exhibieron una morfología más estirada, no se detectaron diferencias estadísticas en la expresión génica de E-cadherina, vimentina, Snail1 e inmunofluorescencia de NA-K ATPasa. Los hallazgos sobre los efectos del cisplatino en dosis bajas en HepG2 podrían contribuir al conocimiento de la ineficacia antineoplásica al comprender mejor los mecanismos moleculares de la acción del fármaco.
Subject(s)
Humans , Cisplatin/administration & dosage , Antineoplastic Agents/administration & dosage , Vimentin/drug effects , Vimentin/genetics , Vimentin/metabolism , Cadherins/drug effects , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Fluorescent Antibody Technique , Microscopy, Confocal , Hep G2 Cells , Epithelial-Mesenchymal Transition , Real-Time Polymerase Chain Reaction , Snail Family Transcription Factors/drug effects , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Neoplasm InvasivenessABSTRACT
The activation of Nod-like receptor protein 3 (NLRP3) has lately been implicated in stress and depression as an initiator mechanism required for the production of interleukin (IL)-1ß and IL-18. Agmatine, an endogenous polyamine widely distributed in mammalian brain, is a novel neurotransmitter/neuromodulator, with antistress, anxiolytic and antidepressant-like effects. In this study, we examined the effect of exogenously administered agmatine on NLRP3 inflammasome pathway/cytokine responses in rats exposed to restraint stress for 7 days. The rats were divided into three groups: stress, stress+agmatine (40 mg/kg; i.p.) and control groups. Agmatine significantly down-regulated the gene expressions of all stress-induced NLRP3 inflammasome components (NLRP3, NF-κB, PYCARD, caspase-1, IL-1ß and IL-18) in the hippocampus and prefrontal cortex (PFC) and reduced pro-inflammatory cytokine levels not only in both brain regions, but also in serum. Stress-reduced levels of IL-4 and IL-10, two major anti-inflammatory cytokines, were restored back to normal by agmatine treatment in the PFC. The findings of the present study suggest that stress-activated NLRP3 inflammasome and cytokine responses are reversed by an acute administration of agmatine. Whether antidepressant-like effect of agmatine can somehow, at least partially, be mediated by the inhibition of NLRP3 inflammasome cascade and relevant inflammatory responses requires further studies in animal models of depression.