Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Plant Biol ; 24(1): 675, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009992

ABSTRACT

Responses of turfgrass to shade vary in individual species, and the degree and quality of low light; therefore, the selection of low light tolerant cultivars of turfgrass is important and beneficial for turf management rather than other practices. The stolons of thirteen bermudagrass genotypes were planted with two treatments and three replications of each treatment to establish for one month in the Yangzhou University Jiangsu China greenhouse. The established plants were transferred outside of the greenhouse, and 50% shading was applied to them with a black net. After 30 days of stress treatment, the morpho-physiological and biochemical analyses were performed. The expression of genes such as HEMA, HY5, PIF4, and Cu/ZnSOD was assessed. Cynodon dactylon is a C4, and perennial that grows as lawn grass and is used as forage. Based on different indicator measurements, the most shade-tolerant germplasm was L01 and L06 along the longitudes and L09 and L10 along the latitudes. At the same time, L02 and L08 were more susceptible, respectively. However, germplasm showed greater tolerance in higher latitudes while longitudinal plants showed less stress response. The current study aimed (1) to screen out the most shade-tolerant Cynodon dactylon genotype among 13 along longitudinal and latitudinal gradients in China. (2) to examine morpho-physiological indicators of different bermudagrassgenotypes; (3) to evaluate if and how differences in various indicators of bermudagrass correlated with geographic region. This study will significantly advance the use of Cynodon germplasm in breeding, genomics, management, nomenclature, and phylogeographical study. It will decisively define whether natural selection and migration can drive evolutionary responses for populations to adapt to their new environments effectively.


Subject(s)
Cynodon , Cynodon/genetics , Cynodon/physiology , China , Genotype , Adaptation, Physiological/genetics
2.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561649

ABSTRACT

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Subject(s)
Antioxidants , Cynodon , Cynodon/physiology , Antioxidants/metabolism , Droughts , Plant Breeding , Photosynthesis/genetics , Water/metabolism , Gene Expression
3.
Sci Total Environ ; 954: 176462, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332719

ABSTRACT

Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.

SELECTION OF CITATIONS
SEARCH DETAIL