Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 154(3): 505-17, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911318

ABSTRACT

Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.


Subject(s)
AMP Deaminase/metabolism , Olivopontocerebellar Atrophies/metabolism , Purines/biosynthesis , AMP Deaminase/chemistry , AMP Deaminase/genetics , Animals , Brain Stem/pathology , Cerebellum/pathology , Child , Female , Guanosine Triphosphate/metabolism , Humans , Male , Mice , Mice, Knockout , Mutation , Neural Stem Cells/metabolism , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/pathology , Protein Biosynthesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
2.
Cell ; 147(1): 70-9, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21962508

ABSTRACT

Soon, the genetic basis of most human Mendelian diseases will be solved. The next challenge will be to leverage this information to uncover basic mechanisms of disease and develop new therapies. To understand how this transformation is already beginning to unfold, we focus on the ciliopathies, a class of multi-organ diseases caused by disruption of the primary cilium. Through a convergence of data involving mutant gene discovery, proteomics, and cell biology, more than a dozen phenotypically distinguishable conditions are now united as ciliopathies. Sitting at the interface between simple and complex genetic conditions, these diseases provide clues to the future direction of human genetics.


Subject(s)
Cilia/genetics , Disease/genetics , Animals , Ciliary Motility Disorders/genetics , Humans , Syndrome
3.
Ann Neurol ; 84(5): 638-647, 2018 11.
Article in English | MEDLINE | ID: mdl-30178464

ABSTRACT

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Subject(s)
Brain Stem/abnormalities , Cadherins/genetics , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Protocadherins
4.
Am J Hum Genet ; 94(1): 80-6, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24360807

ABSTRACT

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.


Subject(s)
Cell Cycle Proteins/genetics , Cerebellar Diseases/genetics , Eye Abnormalities/genetics , Gene Deletion , Kidney Diseases, Cystic/genetics , Microtubule-Associated Proteins/genetics , Retina/abnormalities , Abnormalities, Multiple , Brain/pathology , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Cerebellum/abnormalities , Cilia/genetics , Cilia/pathology , Cohort Studies , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Image Processing, Computer-Assisted , Microtubule-Associated Proteins/metabolism , Polymorphism, Single Nucleotide
5.
Am J Hum Genet ; 92(3): 392-400, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23453666

ABSTRACT

The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum.


Subject(s)
Agenesis of Corpus Callosum/genetics , Corpus Callosum/metabolism , Exome , Mutation , Amino Acid Sequence , Cerebral Cortex/metabolism , Codon/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Methionine/genetics , Molecular Sequence Data , Sequence Analysis, DNA/methods
6.
Development ; 139(15): 2681-91, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22782721

ABSTRACT

Neural development requires crosstalk between signaling pathways and chromatin. In this study, we demonstrate that neurogenesis is promoted by an interplay between the TGFß pathway and the H3K27me3 histone demethylase (HDM) JMJD3. Genome-wide analysis showed that JMJD3 is targeted to gene promoters by Smad3 in neural stem cells (NSCs) and is essential to activate TGFß-responsive genes. In vivo experiments in chick spinal cord revealed that the generation of neurons promoted by Smad3 is dependent on JMJD3 HDM activity. Overall, these findings indicate that JMJD3 function is required for the TGFß developmental program to proceed.


Subject(s)
Developmental Biology/methods , Gene Expression Regulation , Genome-Wide Association Study , Jumonji Domain-Containing Histone Demethylases/metabolism , Neurons/metabolism , Smad3 Protein/metabolism , Animals , Chick Embryo , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mice , Models, Biological , Oligonucleotide Array Sequence Analysis , Phosphorylation , Spinal Cord/embryology , Transforming Growth Factor beta/metabolism
7.
Carcinogenesis ; 35(10): 2194-202, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24853677

ABSTRACT

Cell transformation is clearly linked to epigenetic changes. However, the role of the histone-modifying enzymes in this process is still poorly understood. In this study, we investigated the contribution of the histone acetyltransferase (HAT) enzymes to Ras-mediated transformation. Our results demonstrated that lysine acetyltransferase 5, also known as Tip60, facilitates histone acetylation of bulk chromatin in Ras-transformed cells. As a consequence, global H4 acetylation (H4K8ac and H4K12ac) increases in Ras-transformed cells, rendering a more decompacted chromatin than in parental cells. Furthermore, low levels of CREB-binding protein (CBP) lead to hypoacetylation of retinoblastoma 1 (Rb1) and cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27Kip1) tumour suppressor gene promoters to facilitate Ras-mediated transformation. In agreement with these data, overexpression of Cbp counteracts Ras transforming capability in a HAT-dependent manner. Altogether our results indicate that CBP and Tip60 coordinate histone acetylation at both local and global levels to facilitate Ras-induced transformation.


Subject(s)
CREB-Binding Protein/metabolism , Cell Transformation, Neoplastic/genetics , Genes, ras , Histone Acetyltransferases/metabolism , Histones/metabolism , Trans-Activators/metabolism , Acetylation , Animals , CREB-Binding Protein/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Histone Acetyltransferases/genetics , Lysine Acetyltransferase 5 , Mice , NIH 3T3 Cells/pathology , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic , Signal Transduction , Trans-Activators/genetics
8.
Neurobiol Dis ; 67: 49-56, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24657916

ABSTRACT

Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Neural Tube/growth & development , Neural Tube/metabolism , Amino Acid Sequence , Animals , Apoptosis , Chickens , Gene Dosage , Humans , Methyl-CpG-Binding Protein 2/metabolism , Molecular Sequence Data , Spinal Cord/growth & development , Spinal Cord/metabolism
9.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949298

ABSTRACT

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to wild-type perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, a methodology is presented designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with a same-day genotyping protocol (3 h) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. This method further includes guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate that this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula.


Subject(s)
Gastrulation , Single-Cell Analysis , Animals , Mice , Single-Cell Analysis/methods , Gastrulation/genetics , Female , Embryo, Mammalian , Germ Layers/cytology , Sequence Analysis, RNA/methods , Pregnancy
10.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746120

ABSTRACT

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, we designed a robust pipeline to perform single-cell and nuclei analysis on mouse embryos from E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to WT perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, we present a methodology designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with FAST genotyping protocol (3 hours) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. We also include guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula. SUMMARY: We establish a pipeline for high-quality single-cell and nuclei suspensions of gastrulating mouse embryos for sequencing of single cells and nuclei.

11.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328116

ABSTRACT

Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.

12.
JCI Insight ; 9(10)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625743

ABSTRACT

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.


Subject(s)
Homeostasis , Lipid Metabolism , Purkinje Cells , Sorting Nexins , Sorting Nexins/metabolism , Sorting Nexins/genetics , Animals , Mice , Humans , Purkinje Cells/metabolism , Purkinje Cells/pathology , Disease Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Mice, Knockout , Cerebellum/metabolism , Cerebellum/pathology , Male , Lipid Droplets/metabolism
13.
Cell Rep Med ; 5(2): 101389, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38266642

ABSTRACT

The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.


Subject(s)
Myoclonic Epilepsies, Progressive , Mice , Animals , Myoclonic Epilepsies, Progressive/genetics , Ataxia/genetics , Seizures/genetics , Neurons , Brain
14.
Development ; 137(17): 2915-25, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20667911

ABSTRACT

During spinal cord development, the combination of secreted signaling proteins and transcription factors provides information for each neural type differentiation. Studies using embryonic stem cells show that trimethylation of lysine 27 of histone H3 (H3K27me3) contributes to repression of many genes key for neural development. However, it remains unclear how H3K27me3-mediated mechanisms control neurogenesis in developing spinal cord. Here, we demonstrate that H3K27me3 controls dorsal interneuron generation by regulation of BMP activity. Our study indicates that expression of Noggin, a BMP extracellular inhibitor, is repressed by H3K27me3. Moreover, we show that Noggin expression is induced by BMP pathway signaling, generating a negative-feedback regulatory loop. In response to BMP pathway activation, JMJD3 histone demethylase interacts with the Smad1/Smad4 complex to demethylate and activate the Noggin promoter. Together, our data reveal how the BMP signaling pathway restricts its own activity in developing spinal cord by modulating H3K27me3 levels at the Noggin promoter.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Histones/metabolism , Spinal Cord/embryology , Spinal Cord/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation , Cell Proliferation , Chick Embryo , DNA Primers/genetics , Epigenesis, Genetic , Histones/chemistry , Humans , Methylation , Models, Neurological , Neurogenesis , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Smad Proteins/genetics , Smad Proteins/metabolism , Spinal Cord/cytology
15.
Brain ; 135(Pt 8): 2416-27, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22822038

ABSTRACT

We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic 'butterfly'-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term 'diencephalic-mesencephalic junction dysplasia' to characterize this autosomal recessive malformation.


Subject(s)
Diencephalon/abnormalities , Diencephalon/pathology , Genes, Recessive/genetics , Mesencephalon/abnormalities , Mesencephalon/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Pedigree , Young Adult
16.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425875

ABSTRACT

The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.

17.
Sci Adv ; 9(10): eade1463, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36897941

ABSTRACT

Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.


Subject(s)
Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Mice , Haploinsufficiency , Methyltransferases/genetics , Mice, Knockout , Neurodevelopmental Disorders/genetics , Phenotype
18.
Cell Stem Cell ; 27(6): 920-936.e8, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33147489

ABSTRACT

Zika virus (ZikV) is a flavivirus that infects neural tissues, causing congenital microcephaly. ZikV has evolved multiple mechanisms to restrict proliferation and enhance cell death, although the underlying cellular events involved remain unclear. Here we show that the ZikV-NS5 protein interacts with host proteins at the base of the primary cilia in neural progenitor cells, causing an atypical non-genetic ciliopathy and premature neuron delamination. Furthermore, in human microcephalic fetal brain tissue, ZikV-NS5 persists at the base of the motile cilia in ependymal cells, which also exhibit a severe ciliopathy. Although the enzymatic activity of ZikV-NS5 appears to be dispensable, the amino acids Y25, K28, and K29 that are involved in NS5 oligomerization are essential for localization and interaction with components of the cilium base, promoting ciliopathy and premature neurogenesis. These findings lay the foundation for therapies that target ZikV-NS5 multimerization and prevent the developmental malformations associated with congenital Zika syndrome.


Subject(s)
Ciliopathies , Zika Virus Infection , Zika Virus , Humans , Neurogenesis , Viral Nonstructural Proteins
20.
Nat Genet ; 49(3): 457-464, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28092684

ABSTRACT

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


Subject(s)
Cerebellar Diseases/genetics , Exonucleases/genetics , Mutation/genetics , Nuclear Proteins/genetics , RNA, Small Nuclear/genetics , Alleles , Animals , Female , Humans , Male , Mice , Neurodegenerative Diseases/genetics , RNA, Messenger/genetics , Spliceosomes/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL