Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Gut ; 71(4): 807-821, 2022 04.
Article in English | MEDLINE | ID: mdl-33903148

ABSTRACT

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Humans , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism
2.
Proc Natl Acad Sci U S A ; 115(11): E2556-E2565, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29463701

ABSTRACT

Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.


Subject(s)
Bone Resorption/etiology , HIV Infections/complications , HIV-1/physiology , Osteoclasts/virology , Actins/metabolism , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/physiopathology , Bone and Bones/metabolism , Cell Adhesion , Female , HIV Infections/metabolism , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , Humans , Mice , Osteoclasts/cytology , Osteoclasts/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
3.
Proc Natl Acad Sci U S A ; 114(4): E540-E549, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28069953

ABSTRACT

Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen's control through sustaining type I IFN signaling in DCs.


Subject(s)
Dendritic Cells/immunology , Interferon Type I/immunology , Lectins, C-Type/immunology , Tuberculosis/immunology , Animals , Female , Lectins, C-Type/genetics , Macaca mulatta , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , STAT1 Transcription Factor/immunology , Signal Transduction
4.
Proc Natl Acad Sci U S A ; 114(44): E9346-E9355, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078321

ABSTRACT

Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3ß,5α,6ß-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3ß,5α-diol (OCDO) by 11ß-hydroxysteroid-dehydrogenase-type-2 (11ßHSD2). 11ßHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11ßHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11ßHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11ßHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.


Subject(s)
Breast Neoplasms/metabolism , Carcinogens/metabolism , Cholesterol/metabolism , Receptors, Glucocorticoid/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Animals , Cell Line , Cell Line, Tumor , Cholesterol/analogs & derivatives , Epoxide Hydrolases/metabolism , Estrogen Receptor alpha/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , RNA, Messenger/metabolism
5.
Arch Toxicol ; 93(2): 505-517, 2019 02.
Article in English | MEDLINE | ID: mdl-30448865

ABSTRACT

Fumonisin B1 (FB1), a congener of fumonisins produced by Fusarium species, is the most abundant and most toxicologically active fumonisin. FB1 causes severe mycotoxicosis in animals, including nephrotoxicity, hepatotoxicity, and disruption of the intestinal barrier. However, mechanisms associated with FB1 toxicity are still unclear. Preliminary studies have highlighted the role of liver X receptors (LXRs) during FB1 exposure. LXRs belong to the nuclear receptor family and control the expression of genes involved in cholesterol and lipid homeostasis. In this context, the toxicity of FB1 was compared in female wild-type (LXR+/+) and LXRα,ß double knockout (LXR-/-) mice in the absence or presence of FB1 (10 mg/kg body weight/day) for 28 days. Exposure to FB1 supplemented in the mice's drinking water resulted in more pronounced hepatotoxicity in LXR-/- mice compared to LXR+/+ mice, as indicated by hepatic transaminase levels (ALT, AST) and hepatic inflammatory and fibrotic lesions. Next, the effect of FB1 exposure on the liver transcriptome was investigated. FB1 exposure led to a specific transcriptional response in LXR-/- mice that included altered cholesterol and bile acid homeostasis. ELISA showed that these effects were associated with an elevated FB1 concentration in the plasma of LXR-/- mice, suggesting that LXRs participate in intestinal absorption and/or clearance of the toxin. In summary, this study demonstrates an important role of LXRs in protecting the liver against FB1-induced toxicity, suggesting an alternative mechanism not related to the inhibition of sphingolipid synthesis for mycotoxin toxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Fumonisins/toxicity , Liver X Receptors/metabolism , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Female , Fumonisins/blood , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/physiology , Liver X Receptors/genetics , Mice, Inbred C57BL , Mice, Knockout , Sphingolipids/metabolism
6.
Am J Respir Crit Care Med ; 197(6): 801-813, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29161093

ABSTRACT

RATIONALE: In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. OBJECTIVES: To document the role of B cells in TB in an unbiased manner. METHODS: We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. MEASUREMENTS AND MAIN RESULTS: B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. CONCLUSIONS: Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.


Subject(s)
B-Lymphocytes/metabolism , Interferon Type I/metabolism , Macrophages/metabolism , Tuberculosis/metabolism , Animals , Disease Models, Animal , Humans , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis , Signal Transduction , Spleen/metabolism , Spleen/microbiology
7.
Gut ; 65(7): 1202-14, 2016 07.
Article in English | MEDLINE | ID: mdl-26838599

ABSTRACT

OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD.


Subject(s)
Aging , Fatty Acids/metabolism , Fibroblast Growth Factors/genetics , Hepatocytes , Non-alcoholic Fatty Liver Disease/genetics , PPAR alpha/genetics , Adipocytes , Aging/physiology , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 4/genetics , Disease Models, Animal , Fasting , Fenofibrate/pharmacology , Fibroblast Growth Factors/biosynthesis , Gene Expression/drug effects , Gene Expression Profiling , Homeostasis/genetics , Hypoglycemia/genetics , Hypolipidemic Agents/pharmacology , Hypothermia/genetics , Lipid Metabolism/genetics , Lipolysis/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Overweight/genetics , PPAR alpha/metabolism , RNA, Messenger/metabolism , Triglycerides/metabolism
8.
FASEB J ; 29(5): 1914-29, 2015 May.
Article in English | MEDLINE | ID: mdl-25609430

ABSTRACT

Models of microbe-elicited peritonitis have been invaluable to identify mechanisms underlying inflammation resolution, but whether resolution mechanisms differ from an inflammatory agent to another has not been determined. Thus, we analyzed the cellular and molecular components of the resolution phase of non-microbe-induced inflammation. In thioglycollate (TG)-induced peritonitis, resolution started at 12 h (Tmax) and displayed a 22 h resolution interval (Ri). During resolution, lipoxin A4, resolvin (Rv) D1 and RvD2, protectin D1 (PD1), and maresin 1 (MaR1) were transiently produced while RvD5 was continually generated. In addition, docosahexaenoic acid (DHA)-derived mediators were produced to a higher extent than in microbial peritonitis. We also investigated leukocyte infiltration and clearance in peritoneal tissues surrounding the inflammatory site. In the omentum, resolution parameters, neutrophil apoptosis, and efferocytosis were similar to those of the peritoneal cavity. However, we noticed long-term persistence of M2-polarized macrophages and B-lymphocytes in the omentum after TG administration, whereas zymosan injection caused M1/M2-macrophage and T-lymphocyte persistence regardless of the magnitude of the inflammatory response. Our study indicates that some aspects of resolution are shaped in a stimulus-specific manner, and it ultimately argues that the tissues surrounding the inflammatory site must also be considered to address the inflammatory response globally.


Subject(s)
B-Lymphocytes/immunology , Inflammation/immunology , Leukocytes/immunology , Macrophages/immunology , Peritonitis/immunology , Peritonitis/metabolism , Thioglycolates/toxicity , Animals , Apoptosis/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Blotting, Western , Cells, Cultured , Docosahexaenoic Acids/genetics , Docosahexaenoic Acids/metabolism , Female , Flow Cytometry , Immunoenzyme Techniques , Inflammation/metabolism , Inflammation/pathology , Leukocytes/metabolism , Leukocytes/pathology , Lipids/analysis , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Omentum/immunology , Omentum/metabolism , Omentum/pathology , Peritonitis/chemically induced , Phagocytosis/physiology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Zymosan/toxicity
9.
Br J Cancer ; 113(11): 1590-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26512875

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with a mortality that is almost identical to incidence. Because early detected PDAC is potentially curable, blood-based biomarkers that could detect currently developing neoplasia would improve patient survival and management. PDAC develops from pancreatic intraepithelial neoplasia (PanIN) lesions, graded from low grade (PanIN1) to high grade (PanIN3). We made the hypothesis that specific proteomic signatures from each precancerous stage exist and are detectable in plasma. METHODS: We explored the peptide profiles of microdissected PanIN cells and of plasma samples corresponding to the different PanIN grade from genetically engineered mouse models of PDAC using capillary electrophoresis coupled to mass spectrometry (CE-MS) and Chip-MS/MS. RESULTS: We successfully characterised differential peptides profiles from PanIN microdissected cells. We found that plasma from tumor-bearing mice and age-matched controls exhibit discriminative peptide signatures. We also determined plasma peptide signatures corresponding to low- and high-grade precancerous step present in the mice pancreas using the two mass spectrometry technologies. Importantly, we identified biomarkers specific of PanIN3. CONCLUSIONS: We demonstrate that benign and advanced PanIN lesions display distinct plasma peptide patterns. This strongly supports the perspectives of developing a non-invasive screening test for prediction and early detection of PDAC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma in Situ/blood , Carcinoma, Pancreatic Ductal/blood , Neoplasm Proteins/blood , Pancreatic Neoplasms/blood , Peptides/blood , Precancerous Conditions/blood , Animals , Biomarkers, Tumor/analysis , Carcinoma in Situ/chemistry , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/chemistry , Disease Models, Animal , Mice , Neoplasm Proteins/analysis , Pancreatic Neoplasms/chemistry , Peptides/analysis , Precancerous Conditions/chemistry , Precancerous Conditions/pathology , Protein Array Analysis , Proteome/analysis
10.
Am J Pathol ; 182(6): 1996-2004, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23578383

ABSTRACT

Tumor protein p53-induced nuclear protein 1 (TP53INP1) is involved in cell stress response. Its expression is lost at the pancreatic intraepithelial neoplasia 1b (PanIN1b)/PanIN2 stage of pancreatic carcinogenesis. Our objective was to determine whether TP53INP1 loss of expression contributes to pancreatic cancer formation in a conditional KrasG12D mouse model. We generated Kras-INP1KO mice using LSL-Kras(G12D/+);Pdx1-Cre(+/-) mice (Kras mice) and TP53INP1(-/-) mice. Analysis of pancreases during ageing shows that in the presence of activated Kras, TP53INP1 loss of expression accelerated PanIN formation and increased pancreatic injury and the number of high-grade lesions as compared with what occurs in Kras mice. Moreover, cystic lesions resembling intraductal papillary mucinous neoplasm (IPMN) were observed as early as 2 months of age. Remarkably, TP53INP1 is down-regulated in human IPMN. Activation of the small GTPase Rac1 shows that more oxidative stress is generated in Kras-INP1KO than in Kras mice pancreas despite elevated levels of the Nrf2 antioxidant regulator. We firmly establish the link between Kras-INP1KO pancreatic phenotype and oxidative stress with rescue of the phenotype by the antioxidant action of N-acetylcysteine. Our data provide in vivo functional demonstration that TP53INP1 deficiency accelerates progression of pancreatic cancer, underlining its role in the occurrence of IPMN and highlighting the importance of TP53INP1 in the control of oxidative status during development of pancreatic cancer.


Subject(s)
Nuclear Proteins/physiology , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Progression , Down-Regulation/physiology , Humans , Metaplasia/genetics , Metaplasia/metabolism , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/metabolism
11.
FASEB J ; 27(9): 3608-18, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23742809

ABSTRACT

In osteoclasts, Src controls podosome organization and bone degradation, which leads to an osteopetrotic phenotype in src(-/-) mice. Since this phenotype was even more severe in src(-/-)hck(-/-) mice, we examined the individual contribution of Hck in bone homeostasis. Compared to wt mice, hck(-/-) mice exhibited an osteopetrotic phenotype characterized by an increased density of trabecular bone and decreased bone degradation, although osteoclastogenesis was not impaired. Podosome organization and matrix degradation were found to be defective in hck(-/-) osteoclast precursors (preosteoclast) but were normal in mature hck(-/-) osteoclasts, probably through compensation by Src, which was specifically overexpressed in mature osteoclasts. As a consequence of podosome defects, the 3-dimensional migration of hck(-/-) preosteoclasts was strongly affected in vitro. In vivo, this translated by altered bone homing of preosteoclasts in hck(-/-) mice: in metatarsals of 1-wk-old mice, when bone formation strongly depends on the recruitment of these cells, reduced numbers of osteoclasts and abnormal developing trabecular bone were observed. This phenotype was still detectable in adults. In summmary, Hck is one of the very few effectors of preosteoclast recruitment described to date and thereby plays a critical role in bone remodeling.


Subject(s)
Bone and Bones/cytology , Bone and Bones/metabolism , Cell Movement/physiology , Osteoclasts/cytology , Osteopetrosis/metabolism , Proto-Oncogene Proteins c-hck/metabolism , Animals , Cell Movement/genetics , Cells, Cultured , Female , Homeostasis/genetics , Homeostasis/physiology , Male , Mice , Mice, Knockout , Osteoclasts/metabolism , Osteopetrosis/genetics , Proto-Oncogene Proteins c-hck/genetics , src-Family Kinases/genetics , src-Family Kinases/metabolism
12.
J Hepatol ; 58(5): 984-92, 2013 May.
Article in English | MEDLINE | ID: mdl-23333450

ABSTRACT

BACKGROUND & AIMS: Nutrients influence non-alcoholic fatty liver disease. Essential fatty acids deficiency promotes various syndromes, including hepatic steatosis, through increased de novo lipogenesis. The mechanisms underlying such increased lipogenic response remain unidentified. METHODS: We used wild type mice and mice lacking Liver X Receptors to perform a nutrigenomic study that aimed at examining the role of these transcription factors. RESULTS: We showed that, in the absence of Liver X Receptors, essential fatty acids deficiency does not promote steatosis. Consistent with this, Liver X Receptors are required for the elevated expression of genes involved in lipogenesis in response to essential fatty acids deficiency. CONCLUSIONS: This work identifies, for the first time, the central role of Liver X Receptors in steatosis induced by essential fatty acids deficiency.


Subject(s)
Fatty Acids, Essential/deficiency , Fatty Liver/physiopathology , Gene Expression/physiology , Lipogenesis/genetics , Lipogenesis/physiology , Orphan Nuclear Receptors/physiology , Animals , Cholesterol/metabolism , Deficiency Diseases/physiopathology , Dietary Fats/pharmacology , Disease Models, Animal , Female , Gene Expression/drug effects , Lipogenesis/drug effects , Liver/metabolism , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Orphan Nuclear Receptors/deficiency , Orphan Nuclear Receptors/genetics , Transcription Factors/physiology , Triglycerides/metabolism , Up-Regulation/physiology
13.
Blood ; 118(20): 5371-9, 2011 Nov 17.
Article in English | MEDLINE | ID: mdl-21856865

ABSTRACT

CD8+ CTLs are thought to play a role in the control of follicular lymphoma (FL). Yet, the link between CTL tissue distribution, activation status, ability to kill FL cells in vivo, and disease progression is still elusive. Pretreatment lymph nodes from FL patients were analyzed by IHC (n = 80) or by 3-color confocal microscopy (n = 10). IHC revealed a rich infiltrate of CD8+ granzyme B+ (GrzB) cells in FL interfollicular spaces. Accordingly, confocal microscopy showed an increased number of CD3+CD8+GrzB+ CTLs and a brighter GrzB staining in individual CTL in FL samples compared with reactive lymph nodes. CTLs did not penetrate tumor nodules. In 3-dimensional (3-D) image reconstructions, CTLs were detected at the FL follicle border where they formed lytic synapse-like structures with FL B cells and with apoptotic cells, suggesting an in situ cytotoxic function. Finally, although GrzB expression in CTLs did not correlate with risk factors, high GrzB content correlated with prolonged progression free-survival (PFS) after rituximab-combined chemotherapy. Our results show the recruitment of armed CTLs with a tumor-controlling potential into FL lymph nodes and suggest that CTL-associated GrzB expression could influence PFS in FL patients having received rituximab-combined chemotherapy.


Subject(s)
Imaging, Three-Dimensional , Lymph Nodes/pathology , Lymphoma, Follicular/epidemiology , Lymphoma, Follicular/pathology , T-Lymphocytes, Cytotoxic/pathology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Biomarkers, Tumor/metabolism , CD3 Complex/metabolism , CD8 Antigens/metabolism , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Female , Granzymes/metabolism , Humans , Lymphoma, Follicular/drug therapy , Male , Microscopy, Confocal/methods , Middle Aged , Predictive Value of Tests , Prednisone/administration & dosage , Prognosis , Risk Factors , Rituximab , T-Lymphocytes, Cytotoxic/metabolism , Vincristine/administration & dosage
14.
J Immunol ; 187(7): 3806-14, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21880978

ABSTRACT

Tumor-associated macrophages are known to amplify the malignant potential of tumors by secreting a variety of cytokines and proteases involved in tumor cell invasion and metastasis, but how these macrophages infiltrate tumors and whether the macrophage migration process facilitates tumor cell invasion remain poorly documented. To address these questions, we used cell spheroids of breast carcinoma SUM159PT cells as an in vitro model of solid tumors. We found that macrophages used both the mesenchymal mode requiring matrix metalloproteinases (MMPs) and the amoeboid migration mode to infiltrate tumor cell spheroids. Whereas individual SUM159PT cells invaded Matrigel using an MMP-dependent mesenchymal mode, when they were grown as spheroids, tumor cells were unable to invade the Matrigel surrounding spheroids. When spheroids were infiltrated or in contact with macrophages, tumor cell invasiveness was restored. It was dependent on the capacity of macrophages to remodel the matrix and migrate in an MMP-independent mesenchymal mode. This effect of macrophages was much reduced when spheroids were infiltrated by Matrigel migration-defective Hck(-/-) macrophages. In the presence of macrophages, SUM159PT migrated into Matrigel in the proximity of macrophages and switched from an MMP-dependent mesenchymal migration to an amoeboid mode resistant to protease inhibitors.Thus, in addition to the well-described paracrine loop between macrophages and tumor cells, macrophages can also contribute to the invasiveness of tumor cells by remodeling the extracellular matrix and by opening the way to exit the tumor and colonize the surrounding tissues in an MMP-dispensable manner.


Subject(s)
Chemotaxis, Leukocyte/physiology , Macrophages/metabolism , Matrix Metalloproteinases/metabolism , Neoplasm Invasiveness/immunology , Spheroids, Cellular/immunology , Animals , Cell Line, Tumor , Female , Humans , Immunohistochemistry , Macrophages/immunology , Macrophages/ultrastructure , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Neoplasm Invasiveness/pathology , Spheroids, Cellular/metabolism , Spheroids, Cellular/ultrastructure
15.
Blood ; 115(7): 1444-52, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-19897576

ABSTRACT

Tissue infiltration of phagocytes exacerbates several human pathologies including chronic inflammations or cancers. However, the mechanisms involved in macrophage migration through interstitial tissues are poorly understood. We investigated the role of Hck, a Src-family kinase involved in the organization of matrix adhesion and degradation structures called podosomes. In Hck(-/-) mice submitted to peritonitis, we found that macrophages accumulated in interstitial tissues and barely reached the peritoneal cavity. In vitro, 3-dimensional (3D) migration and matrix degradation abilities, 2 protease-dependent properties of bone marrow-derived macrophages (BMDMs), were affected in Hck(-/-) BMDMs. These macrophages formed few and undersized podosome rosettes and, consequently, had reduced matrix proteolysis operating underneath despite normal expression and activity of matrix metalloproteases. Finally, in fibroblasts unable to infiltrate matrix, ectopic expression of Hck provided the gain-of-3D migration function, which correlated positively with formation of podosome rosettes. In conclusion, spatial organization of podosomes as large rosettes, proteolytic degradation of extracellular matrix, and 3D migration appeared to be functionally linked and regulated by Hck in macrophages. Hck, as the first protein combining a phagocyte-limited expression with a role in 3D migration, could be a target for new anti-inflammatory and antitumor molecules.


Subject(s)
Cell Movement/physiology , Extracellular Matrix/metabolism , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/pathology , Peritonitis/metabolism , Proto-Oncogene Proteins c-hck/metabolism , 3T3 Cells , Animals , Bone Marrow Cells/cytology , Cell Movement/drug effects , Cells, Cultured , Extracellular Matrix/drug effects , Imaging, Three-Dimensional , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Peritoneal Cavity/pathology , Peritonitis/pathology , Phagocytes/metabolism , Phagocytes/pathology , Protease Inhibitors/pharmacology , Proto-Oncogene Proteins c-hck/genetics
16.
Blood ; 115(20): 4061-70, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20223922

ABSTRACT

NPM-ALK (nucleophosmin-anaplastic lymphoma kinase) and TPM3-ALK (nonmuscular tropomyosin 3-anaplastic lymphoma kinase) are oncogenic tyrosine kinases implicated in the pathogenesis of human ALK-positive lymphoma. We report here the development of novel conditional mouse models for ALK-induced lymphomagenesis, with the use of the tetracycline regulatory system under the control of the EmuSRalpha enhancer/promoter. The expression of either oncogene resulted in the arrest of the differentiation of early B cells and lymphomagenesis. We also observed the development of skin keratoacanthoma lesions, probably because of aberrant ALK expression in keratinocytes. The inactivation of the ALK oncogene on doxycycline treatment was sufficient to induce sustained regression of both hematopoietic tumors and skin disease. Importantly, treatment with the specific ALK inhibitor (PF-2341066) also reversed the pathologic states, showing the value of these mouse models for the validation of ALK tyrosine kinase inhibitors. Thus, our results show (1) that NPM-ALK and TPM3-ALK oncogenes are sufficient for lymphoma/leukemia development and required for tumor maintenance, hence validating ALK as potentially effective therapeutic target; and (2) for the first time, in vivo, the equal tumorigenic potential of the NPM-ALK and TPM3-ALK oncogenic tyrosine kinases. Our models offer a new tool to investigate in vivo the molecular mechanisms associated with ALK-induced lymphoproliferative disorders.


Subject(s)
Leukemia, B-Cell/pathology , Lymphoma, B-Cell/pathology , Protein-Tyrosine Kinases/genetics , Tropomyosin/genetics , Anaplastic Lymphoma Kinase , Animals , Apoptosis , Blotting, Western , Cell Differentiation , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunoblotting , Immunoenzyme Techniques , Integrases/metabolism , Leukemia, B-Cell/genetics , Leukemia, B-Cell/metabolism , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Mice , Mice, Transgenic , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor Protein-Tyrosine Kinases , Reverse Transcriptase Polymerase Chain Reaction , Tropomyosin/metabolism
17.
Crit Care Med ; 39(9): 2131-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21572325

ABSTRACT

OBJECTIVE: Sparse data are available on renal consequences of hemorrhagic shock in mice. This study aimed to extend the current knowledge on functional and morphologic renal impact of hemorrhagic shock in mice and to determine its ability to stand as an accurate model of acute kidney injury. DESIGN: In vivo study. SETTING: University research unit. SUBJECTS: C57/Bl6 mice. INTERVENTIONS: A model of controlled hemorrhagic shock was adapted to determine the renal impact of hemorrhagic shock in mice. MEASUREMENTS AND MAIN RESULTS: Renal functions and kidney morphology were followed up from 3 hrs to 21 days after hemorrhagic shock. When prolonged up to 2 hrs, hypotension (35 mm Hg mean arterial blood pressure) induced by temporary blood removal was responsible for an early and lasting increase in hypoxia-inducible factor-1α and kidney-inducible molecule-1 gene expression that paralleled acute tubular necrosis and renal failure. Two-hr hypotension induced an important but reversible decrease in glomerular filtration rate up to 6 days after hemorrhagic shock. Other renal dysfunctions included a renal loss of sodium, assessed by the increase in sodium excretion, and a decrease in urine concentration that persists up to day 21. Tissular damages prevailed in the outer medulla 2 days after hemorrhagic shock, being maximal at day 6. At day 21, renal healing was associated with epithelial recovery and a significant interstitial fibrosis. CONCLUSIONS: Our data indicate that apparent recovery of renal function after acute kidney injury can mask persisting dysfunctions and tissular damages that could predispose to chronic kidney disease. Prolonged hemorrhagic shock in mice closely mimics renal effects induced by similar situation in humans, thus providing a useful tool to investigate pathophysiological mechanisms and protection strategies against acute kidney injury in situations such as hemorrhagic shock.


Subject(s)
Acute Kidney Injury/etiology , Shock, Hemorrhagic/complications , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Disease Models, Animal , Glomerular Filtration Rate , Hepatitis A Virus Cellular Receptor 1 , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/pathology , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/physiopathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Shock, Hemorrhagic/pathology , Shock, Hemorrhagic/physiopathology , Time Factors
18.
Blood ; 114(12): 2515-20, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19622835

ABSTRACT

Impaired regulation of hepcidin expression in response to iron loading appears to be the pathogenic mechanism for hereditary hemochromatosis. Iron normally induces expression of the BMP6 ligand, which, in turn, activates the BMP/Smad signaling cascade directing hepcidin expression. The molecular function of the HFE protein, involved in the most common form of hereditary hemochromatosis, is still unknown. We have used Hfe-deficient mice of different genetic backgrounds to test whether HFE has a role in the signaling cascade induced by BMP6. At 7 weeks of age, these mice have accumulated iron in their liver and have increased Bmp6 mRNA and protein. However, in contrast to mice with secondary iron overload, levels of phosphorylated Smads 1/5/8 and of Id1 mRNA, both indicators of BMP signaling, are not significantly higher in the liver of these mice than in wild-type livers. As a consequence, hepcidin mRNA levels in Hfe-deficient mice are similar or marginally reduced, compared with 7-week-old wild-type mice. The inappropriately low levels of Id1 and hepcidin mRNA observed at weaning further suggest that Hfe deficiency triggers iron overload by impairing hepatic Bmp/Smad signaling. HFE therefore appears to facilitate signal transduction induced by the BMP6 ligand.


Subject(s)
Bone Morphogenetic Protein 6/metabolism , Histocompatibility Antigens Class I/physiology , Membrane Proteins/physiology , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Blotting, Western , Bone Morphogenetic Protein 6/genetics , Hemochromatosis Protein , Hepcidins , Immunoenzyme Techniques , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Iron/administration & dosage , Iron Overload , Liver/cytology , Liver/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Smad1 Protein/genetics , Smad5 Protein/genetics , Smad8 Protein/genetics
19.
Clin Chem ; 56(4): 603-12, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20093556

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has the poorest overall prognosis among gastrointestinal cancers; however, curative resection in early-stage PDAC greatly improves survival rates, indicating the importance of early detection. Because abnormal microRNA production is commonly detected in cancer, we investigated noninvasive precursor pancreatic intraepithelial neoplasia (PanIN) lesions for microRNA production as a potential early biomarker of PDAC. METHODS: Pathologists identified and classified ductal lesions. We extracted total RNA from laser-capture microdissected PanIN tissue samples from a conditional KRAS(G12D) mouse model (n = 29) or of human origin (n = 38) (KRAS is v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog). MicroRNA production was quantified by quantitative real-time PCR. Internal controls included 5S and U6 RNAs. RESULTS: Production of microRNAs miR-21, miR-205, and miR-200 paralleled PanIN progression in the KRAS(G12D) mouse model, compared with microRNA production in samples of nonpathologic ducts. miR-21 demonstrated the highest relative concentrations in the precursor lesions. Interestingly, miR-205 and miR-21 up-regulation preceded phenotypic changes in the ducts. The production of microRNAs miR-21, miR-221, miR-222, and let-7a increased with human PanIN grade, with peak production occurring in hyperplastic PanIN-2/3 lesions. In situ hybridization analysis indicated miR-21 production to be concentrated in pathologic ductal cells. miR-21 production was regulated by KRAS(G12D) and epidermal growth factor receptor in PDAC-derived cell lines. CONCLUSIONS: Aberrant microRNA production is an early event in the development of PanIN. Our findings indicate that miR-21 warrants further investigation as a marker for early detection of PDAC.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/surgery , Cell Line, Tumor , Disease Models, Animal , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Mice , Mice, Knockout , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
20.
Cancer Immun ; 9: 10, 2009 Nov 02.
Article in English | MEDLINE | ID: mdl-19877577

ABSTRACT

Cell surface expression of MHC class I molecules by tumor cells is determinant in the interplay between tumor cells and the immune system. Nevertheless, the mechanisms which regulate MHCI expression on tumor cells are not clear. We previously showed that immune innate cells from the spleen can regulate MHCI expression on MHCI(low) tumor cells. Here, using the murine model of B16 melanoma, we demonstrate that the MHCI status of tumor cells in vivo is regulated by the microenvironment. In subcutaneous grafts, induction of MHCI molecules on tumor cells is concomitant to the recruitment of lymphocytes and relies on an IFNgamma-mediated mechanism. gammadelta T and NK cells are essential to this regulation. A small proportion of tumor-infiltrating NK cells and gammadelta T cells were found to produce IFNgamma, suggesting a possible direct participation to the MHCI increase on the tumor cells upon tumor cell recognition. Depletion of gammadelta T cells increases the tumor growth rate, confirming their anti-tumoral role in our model. Taken together, our results demonstrate that in vivo, NK and gammadelta T cells play a dual role during the early growth of MHCI(low) tumor cells. In addition to controlling the growth of tumor cells, they contribute to modifying the immunogenic profile of residual tumor cells.


Subject(s)
Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Melanoma/immunology , Melanoma/pathology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Progression , Histocompatibility Antigens Class I/metabolism , Interferon-gamma/immunology , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Receptors, Antigen, T-Cell, gamma-delta/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL