ABSTRACT
Most studies assume midday gas exchange measurements capture the leaf's daytime performance. However, stomatal conductance (gs ) and photosynthesis (An ) fluctuate diurnally due to endogenous and environmental rhythms, which can affect intrinsic water use efficiency (iWUE). Six Sorghum lines with contrasting stomatal anatomical traits were grown in environmentally controlled conditions, and leaf gas exchange was measured three times a day. Stomatal anatomy and kinetic responses to light transients were also measured. The highest An and gs and the lowest iWUE were observed at midday for most lines. Diurnally averaged iWUE correlated positively with morning and midday iWUE and negatively with the time taken for stomata to close after transition to low light intensity (kclose ). There was significant variation among sorghum lines for kclose , and smaller kclose correlated with lower gs and higher stomatal density (SD) across the lines. In turn, gs was negatively correlated with SD and regulated by the operational stomatal aperture regardless of stomatal size. Altogether, our data suggest a common physiology to improve iWUE in sorghum related to the control of water loss without impacting photosynthesis relying on higher SD, lower stomatal aperture and faster stomatal closing in response to low light intensity.
Subject(s)
Sorghum , Water , Water/physiology , Plant Stomata/physiology , Plant Leaves/physiology , Light , Photosynthesis/physiology , Carbon DioxideABSTRACT
Environmental change requires more crop production per water use to meet the rising global food demands. However, improving crop intrinsic water use efficiency (iWUE) usually comes at the expense of carbon assimilation. Sorghum is a key crop in many vulnerable agricultural systems with higher tolerance to water stress (WS) than most widely planted crops. To investigate physiological controls on iWUE and its inheritance in sorghum we screened 89 genotypes selected based on inherited haplotypes from an elite or five exotics lines, containing a mix of geographical origins and dry vs. milder climates, which included different aquaporin (AQP) alleles. We found significant variation among key highly heritable gas exchange and hydraulic traits, with some being significantly affected by variation in haplotypes among parental lines. Plants with a higher proportion of the non-stomatal component of iWUE still maintained iWUE under WS by maintaining photosynthetic capacity, independently of reduction in leaf hydraulic conductance. Haplotypes associated with two AQPs (SbPIP1.1 and SbTIP3.2) influenced iWUE and related traits. These findings expand the range of traits that bridge the trade-off between iWUE and productivity in C4 crops, and provide possible genetic regions that can be targeted for breeding.
ABSTRACT
Sustaining crop productivity and resilience in water-limited environments and under rising temperatures are matters of concern worldwide. We investigated the leaf anatomical traits that underpin our recently identified link between leaf width (LW) and intrinsic water use efficiency (iWUE), as traits of interest in plant breeding. Ten sorghum lines with varying LW were grown under three temperatures to expand the range of variation of both LW and gas exchange rates. Leaf gas exchange, surface morphology and cross-sectional anatomy were measured and analysed using structural equations modelling. Narrower leaves had lower stomatal conductance (gs ) and higher iWUE across growth temperatures. They also had smaller intercellular airspaces, stomatal size, percentage of open stomatal aperture relative to maximum, hydraulic pathway, mesophyll thickness, and leaf mass per area. Structural modelling revealed a developmental association among leaf anatomical traits that underpinned gs variation in sorghum. Growing temperature and LW both impacted leaf gas exchange rates, but only LW directly impacted leaf anatomy. Wider leaves may be more productive under well-watered conditions, but consume more water for growth and development, which is detrimental under water stress.
Subject(s)
Plant Stomata , Sorghum , Temperature , Plant Stomata/anatomy & histology , Photosynthesis , Plant Leaves/anatomy & histologyABSTRACT
Elevated [CO2] (eCO2) and water stress reduce leaf stomatal conductance (gs), which may affect leaf thermoregulation during heat waves (heat stress). Two sorghum lines, with different leaf width were grown in a glasshouse at a mean day temperature of 30 °C, under different [CO2] and watering levels, and subjected to heat stress (43 °C) for 6 d at the start of the reproductive stage. We measured leaf photosynthetic and stomatal responses to light transients before harvesting the plants. Photosynthesis at growth conditions (Agrowth) and biomass accumulation were enhanced by eCO2 under control conditions. Heat stress increased gs, especially in wider leaves, and reduced the time constant of stomatal opening (kopen) at ambient [CO2] but not eCO2. However, heat stress reduced photosynthesis under water stress and eCO2 due to increased leaf temperature and reduced evaporative cooling. eCO2 prevented the reduction of biomass under both water and heat stress, possibly due to improved plant and soil water status as a result of reduced gs. Our results suggest that the response of the C4 crop sorghum to future climate conditions depends on the trade-off between low gs needed for high water use efficiency and drought tolerance, and the high gs needed for improved thermoregulation and heat tolerance under an eCO2 future.
Subject(s)
Carbon Dioxide , Dehydration , Biomass , Photosynthesis/physiology , Plant Leaves/physiology , Edible GrainABSTRACT
Despite its importance for crop water use and productivity, especially in drought-affected environments, the underlying mechanisms of variation in intrinsic water-use efficiency (iWUE = net photosynthesis/stomatal conductance for water vapour, gsw ) are not well understood, especially in C4 plants. Recently, we discovered that leaf width (LW) correlated negatively with iWUE and positively with gsw across several C4 grasses. Here, we confirmed these relationships within 48 field-grown genotypes differing in LW in Sorghum bicolor, a C4 crop adapted to dry and hot conditions. We measured leaf gas exchange and modelled leaf energy balance three times a day, alongside anatomical traits as potential predictors of iWUE. LW correlated negatively with iWUE and stomatal density, but positively with gsw , interveinal distance of longitudinal veins, and the percentage of stomatal aperture relative to maximum. Energy balance modelling showed that wider leaves needed to open their stomata more to generate a more negative leaf-to-air temperature difference, especially at midday when air temperatures exceeded 40°C. These results highlight the important role that LW plays in shaping iWUE through coordination of vein and stomatal traits and by affecting stomatal aperture. Therefore, LW could be used as a predictor of higher iWUE among sorghum genotypes.