Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Oral Implants Res ; 35(2): 141-154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964421

ABSTRACT

OBJECTIVES: Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS: MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS: While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION: Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.


Subject(s)
Mesenchymal Stem Cells , Platelet-Rich Fibrin , Rats , Humans , Animals , Culture Media, Conditioned/metabolism , Proteomics , Secretome , Bone Regeneration , Intercellular Signaling Peptides and Proteins/metabolism , Collagen/metabolism , Skull/surgery , Skull/pathology , Leukocytes/metabolism
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685865

ABSTRACT

Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.


Subject(s)
Mesenchymal Stem Cells , Platelet-Rich Fibrin , Humans , Secretome , Proteomics , Leukocytes , Extracellular Matrix Proteins
3.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948255

ABSTRACT

Oxidative stress from high levels of intracellular reactive oxygen species (ROS) has been linked to various bone diseases. Previous studies indicate that mesenchymal stem cells (MSC) secrete bioactive factors (conditioned medium (MSC-CM)) that have antioxidant effects. However, the antioxidant role of MSC-CM on osteogenesis has not been fully studied. We aimed to identify antioxidant proteins in MSC-CM using mass spectrometry-based proteomics and to explore their effects on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSC) exposed to oxidative stress induced by hydrogen peroxide (H2O2). Our analysis revealed that MSC-CM is comprised of antioxidant proteins that are involved in several biological processes, including negative regulation of apoptosis and positive regulation of cell proliferation. Then, hBMSC exposed to H2O2 were treated with MSC-CM, and the effects on their osteogenic differentiation were evaluated. MSC-CM restored H2O2-induced damage to hBMSC by increasing the antioxidant enzyme-SOD production and the mRNA expression level of the anti-apoptotic BCL-2. A decrease in ROS production and cellular apoptosis was also shown. MSC-CM also modulated mRNA expression levels of osteogenesis-related genes, runt-related transcription factor 2, collagen type I, bone morphogenic protein 2, and osteopontin. Furthermore, collagen type I protein secretion, alkaline phosphatase activity, and in vitro mineralization were increased. These results indicate that MSC-CM contains several proteins with antioxidant and anti-apoptotic properties that restored the impaired hBMSC osteogenic differentiation associated with oxidative stress.


Subject(s)
Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Antioxidants/pharmacology , Apoptosis/drug effects , Bone Marrow Cells/cytology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , Osteogenesis/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
4.
Dent Traumatol ; 33(1): 19-26, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27145147

ABSTRACT

AIM: To evaluate the effect of MSC-conditioned medium (CM) on the secretion of pro- and anti-inflammatory cytokines from dental pulp cells (hDPC) in vitro, and on the gene expression in vivo after replantation of rat molars. MATERIALS AND METHODS: hDPC were cultured in CM for 24 h, and the concentration of interleukin IL-10, IL-4, IL-6, and IL-8, regulated on activation, normal T Cell expressed and secreted (RANTES), and prostaglandin E2 (PGE2 ) in the media were measured by multiplex assay and ELISA, respectively. Expression of cyclooxygenase-2 (COX-2) was also examined by Western blot analysis after 24 h. Left and right maxillary first rat molars (n = 20) were elevated for 2 min and then replanted with or without application of CM into the tooth sockets. Levels of IL-1ß, IL-10, IL-4, IL-6, and IL-8, and tumor necrosis factor-alpha (TNF-α) mRNA were evaluated by real-time qRT-PCR 3 and 14 days following tooth replantation. RESULTS: The production of IL-8, IL-10, and IL-6, RANTES and PGE2 by cells cultured in CM was significantly higher than production by cells cultured in standard medium (DMEM). At day 3 following replantation in vivo, the levels of IL-1ß and IL-6, and TNF-α mRNA were significantly lower in the CM-treated replanted teeth compared with control teeth. Further, at day 3, the IL-6/IL-10 ratio was significantly lower in the CM-treated replanted teeth compared with control. At day 14 following replantation, no differences in the mRNA ratios were detected between the pulp tissues of replanted and control teeth. CONCLUSIONS: These findings indicated that CM promotes secretion of pro- and anti-inflammatory cytokines from hDPCin vitro and attenuates the initial inflammatory response in the rat dental pulp in vivo following tooth replantation.


Subject(s)
Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Dental Pulp/cytology , Dental Pulp/metabolism , Mesenchymal Stem Cells/physiology , Animals , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Molar/surgery , Rats , Real-Time Polymerase Chain Reaction , Tooth Extraction , Tooth Replantation
5.
Dent Traumatol ; 32(3): 231-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26663020

ABSTRACT

AIM: To investigate the effect of paracrine factors secreted from human bone marrow stromal cell (BMSC-CM) on pulpal and periodontal healing following immediate replantation of maxillary rat first molars. MATERIAL AND METHODS: Fifty maxillary rat first molars were elevated and replanted after 2 min. The left teeth were replanted without treatment, whereas BMSC-CM was injected into the right socket prior to replantation. Twelve un-operated teeth served as reference teeth. The expression of vascular endothelial growth factor A, alkaline phosphatase, Runt-related transcription factor 2 and osteoclast stimulating factor 1 was studied by real-time reverse transcription polymerase chain reaction at day 3 and 14. The dentin thickness together with Laminin- and PGP 9.5-immunoreactivity were studied after 3, 14 and 90 days. RESULTS: Real-Time qRT-PCR data showed up-regulated expression of ALP mRNA in the socket specimens of conditioned medium treated replanted teeth after 3 days. No morphological differences were found for the expression of Laminin and PGP 9.5 between control and conditioned medium treated replanted teeth. At day 14, external cervical and surface root resorption was found in one BMSC-CM and one control tooth. At 90 days, all control replanted teeth had external cervical and surface root resorptions, whereas only one sample was seen among the conditioned medium treated teeth. At day 90, more extensive dentine formation with narrowing of the pulpal space was observed in the control compared with conditioned medium treated teeth. CONCLUSIONS: The present findings showed that BMSC-CM treatment reduced the number of replanted teeth with external root resorption and resulted in a significant reduction in new dentin formation.


Subject(s)
Dental Pulp/metabolism , Root Resorption , Tooth Root , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Mesenchymal Stem Cells , Molar , Rats , Tooth Replantation
6.
Stem Cell Res Ther ; 15(1): 33, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321490

ABSTRACT

BACKGROUND: There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs derived from undifferentiated hMSC (Naïve-EVs) and hMSC during the early stage of osteogenesis (Osteo-EVs). A further aim was to assess the osteoinductive potential of Osteo-EVs for bone regeneration in rat calvarial defects. METHODS: EVs from both groups were isolated using size-exclusion chromatography and characterized by size distribution, morphology, flow cytometry analysis and proteome profiling. The effects of EVs (10 µg/ml) on the proliferation, migration, and osteogenic differentiation of cultured hMSC were evaluated. Osteo-EVs (50 µg) or serum-free medium (SFM, control) were combined with collagen membrane scaffold (MEM) to repair critical-sized calvarial bone defects in male Lewis rats and the efficacy was assessed using µCT, histology and histomorphometry. RESULTS: Although Osteo- and Naïve-EVs have similar characteristics, proteomic analysis revealed an enrichment of bone-related proteins in Osteo-EVs. Both groups enhance cultured hMSC proliferation and migration, but Osteo-EVs demonstrate greater efficacy in promoting in vitro osteogenic differentiation, as evidenced by increased expression of osteogenesis-related genes, and higher calcium deposition. In rat calvarial defects, MEM with Osteo-EVs led to greater and more consistent bone regeneration than MEM loaded with SFM. CONCLUSIONS: This study discloses differences in the protein profile and functional effects of EVs obtained from naïve hMSC and hMSC during the early stage of osteogenesis, using different methods. The significant protein profile and cellular function of EVs derived from hMSC during the early stage of osteogenesis were further verified by a calvarial bone defect model, emphasizing the importance of using differentiated MSC to produce EVs for bone therapeutics.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Rats , Male , Animals , Osteogenesis/genetics , Proteomics , Mesenchymal Stem Cells/metabolism , Rats, Inbred Lew , Bone Regeneration/physiology , Cell Differentiation , Extracellular Vesicles/metabolism
7.
PLoS One ; 18(11): e0293908, 2023.
Article in English | MEDLINE | ID: mdl-37943848

ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is characterized by chronic inflammation, demyelination, and axonal degeneration within the central nervous system (CNS), for which there is no current treatment available with the ability to promote neuroprotection or remyelination. Some aspects of the progressive form of MS are displayed in the murine cuprizone model, where demyelination is induced by the innate immune system without major involvement of the adaptive immune system. Mesenchymal stem cells (MSCs) are multipotent cells with immunomodulatory and neuroprotective potential. In this study, we aimed to assess the neuroprotective potential of MSCs from bone marrow (BM-MSCs) and stem cells from human exfoliated deciduous teeth (SHED) in the cuprizone model. METHODS: Human BM-MSCs and SHED were isolated and characterized. Nine-week-old female C57BL/6 mice were randomized to receive either human BM-MSCs, human SHED or saline intraperitoneally. Treatments were administered on day -1, 14 and 21. Outcomes included levels of local demyelination and inflammation, and were assessed with immunohistochemistry and histology. RESULTS: BM-MSCs were associated with increased myelin content and reduced microglial activation whereas mice treated with SHED showed reduced microglial and astroglial activation. There were no differences between treatment groups in numbers of mature oligodendrocytes or axonal injury. MSCs were identified in the demyelinated corpus callosum in 40% of the cuprizone mice in both the BM-MSC and SHED group. CONCLUSION: Our results suggest a neuroprotective effect of MSCs in a toxic MS model, with demyelination mediated by the innate immune system.


Subject(s)
Mesenchymal Stem Cells , Multiple Sclerosis , Humans , Female , Animals , Mice , Cuprizone , Bone Marrow/pathology , Neuroprotection , Disease Models, Animal , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Oligodendroglia/pathology , Inflammation/pathology , Tooth, Deciduous , Corpus Callosum/pathology
8.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: mdl-36899904

ABSTRACT

Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.


Subject(s)
Mesenchymal Stem Cells , Proteomics , Rats , Humans , Animals , Rats, Wistar , Culture Media, Conditioned/metabolism , Skull/pathology , Bone Regeneration , Collagen/metabolism , Mesenchymal Stem Cells/metabolism
9.
Cells ; 11(3)2022 01 29.
Article in English | MEDLINE | ID: mdl-35159282

ABSTRACT

Mesenchymal stromal cells (MSC) loaded on biphasic calcium phosphate biomaterial (MSC + BCP) have been used as an advanced therapy medicinal product to treat complex maxillofacial bone defects in patients. Further, MSC-derived extracellular vesicles (EVs) are established vehicles of paracrine factors, supporting inter-cellular communication between MSC and other interacting cell types, such as monocytes/macrophages. However, the information about the immunomodulatory potential of EVs derived from MSC and biomaterial constructs (MSC + BCP:EV) and inflammatory primed constructs (MSCp + BCP:EV) are scarce. Hence, we isolated and characterized EVs from these different systems, and compared their cytokine contents with plastic-adherent MSC-derived EVs (MSC:EV). When EVs from all three MSC systems were added to the primary blood-derived macrophages in vitro, significantly higher numbers of M0 (naive) macrophages shifted to M2-like (anti-inflammatory) by MSCp + BCP:EV treatment. Further, this treatment led to enhanced switching of M1 polarized macrophages to M2 polarized, and conversely, M2 to M1, as evaluated by determining the M1/M2 ratios after treatment. The enhanced macrophage modulation by MSCp + BCP:EV was attributed to their higher immunomodulatory (TNFα, IL1ß, IL5), angiogenic (VEGF), and chemokine-rich (RANTES, MCP1, MIP1ß) cytokine cargo. In conclusion, we successfully isolated and characterized EVs from MSC + BCP constructs and demonstrated that, depending upon the tissue microenvironment, these EVs contribute towards modulating the macrophage-mediated inflammation and healing responses. The study offers new insights into the use of biomaterial-induced EVs for MSC secretome delivery, as a step towards future 'cell-free' bone regenerative therapies.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cytokines/metabolism , Extracellular Vesicles/metabolism , Humans , Hydroxyapatites , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism
10.
Front Bioeng Biotechnol ; 10: 969275, 2022.
Article in English | MEDLINE | ID: mdl-36246352

ABSTRACT

Culturing mesenchymal stromal cells (MSC) in human platelet lysate (HPL) supplemented media can enhance their osteogenic differentiation potential. The objective of this study was to test the hypothesis that conditioned media (CM) derived from HPL-cultured MSC also have pro-osteogenic effects. Pooled CM was prepared from HPL-cultured human bone marrow MSC (BMSC) of multiple donors and applied on BMSC of different donors (than those used for CM preparation), with or without additional supplementation [HPL, fetal bovine serum (FBS)] and osteogenic stimulation. At various time-points, cell proliferation, alkaline phosphatase (ALP) activity, osteogenic gene expression and in vitro mineralization were assessed. BMSC in standard unstimulated growth media served as controls. After 3-7 days, CM alone did not promote BMSC proliferation or ALP activity; supplementation of CM with HPL slightly improved these effects. After 2 and 7 days, CM alone, but not CM supplemented with HPL, promoted osteogenic gene expression. After 14 days, only CM supplemented with FBS and osteogenic stimulants supported in vitro BMSC mineralization; CM alone and CM supplemented with HPL did not support mineralization, regardless of osteogenic stimulation. In summary, CM from HPL-cultured BMSC promoted osteogenic gene expression but not in vitro mineralization in allogeneic BMSC even when supplemented with HPL and/or osteogenic stimulants. Future studies should investigate the role and relevance of supplementation and osteogenic induction in in vitro assays using CM from MSC.

11.
Stem Cells Int ; 2021: 6698100, 2021.
Article in English | MEDLINE | ID: mdl-34234830

ABSTRACT

The current review aims to systematically assess the osteogenic capacity of gingiva-derived mesenchymal stem cells (GMSCs) in preclinical studies. A comprehensive electronic search of PubMed, Embase, Web of Science, and Scopus databases, as well as a manual search of relevant references, was performed in June 2020 without date or language restrictions. Eligibility criteria were the following: studies that compared mesenchymal stem cells (MSCs) derived from the gingiva with other MSC sources (in vitro or in vivo) or cell-free scaffold (in vivo) and studies that reported at least one of the following outcomes: osteogenic potential and new bone formation for in vitro and in vivo, respectively. Moreover, the assessment of included studies was conducted using appropriate guidelines. From 646 initial retrieved studies, 35 full-text articles were subjected to further screening and 26 studies were selected (20 in vitro studies and 6 in vivo studies). GMSCs showed great proliferation capacity and expressed recognized mesenchymal stem cell markers, particularly CD90. In vitro, MSC sources including GMSCs were capable of undergoing osteogenic differentiation with less ability in GMSCs, while most in vivo studies confirmed the capacity of GMSCs to regenerate bony defects. Concerning the assessment of methodological quality, in vitro studies met the relevant guideline except in five areas: the sample size calculation, randomization, allocation concealment, implementation, and blinding, and in vivo publications had probably low risk of bias in most domains except in three areas: allocation concealment, attrition, and blinding items.

12.
J Biomed Mater Res A ; 108(6): 1369-1379, 2020 06.
Article in English | MEDLINE | ID: mdl-32107841

ABSTRACT

Collagen 1 (COL1) and fibronectin (FN) are extracellular matrix proteins that contribute in cell activity and involve in regulating dental pulp cells (DPCs). The purpose of this study was to investigate the effect of COL1 and FN on the behavior of DPCs. Here, DPCs were grown under three different conditions: COL1 coating, FN coating, and control group without coating. The proliferation and differentiation of DPCs were investigated. DPCs in osteogenic media were able to differentiate into osteoblastic phenotype. The morphological analysis revealed no obvious difference on the shape of cells. Cells had spread well on both coated and noncoated culture plates with slightly more spreading in the coated plates after 24 hr. The MTT analysis did not demonstrate a significant difference at 1 and 3 hr among the groups, but interestingly, the analysis disclosed more cells on the coated plates after longer cultures, which indicated a higher proliferative capacity in response to COL1 and FN. RT-PCR, Western Blotting and mineralization assays did not reveal significant differences between the coated and noncoated surfaces in relation to osteogenic differential potential. Our data suggested that the surface coating of COL1 and FN were able to promote cellular proliferation and the osteogenic differentiation tendency of DPCs was also observed in vitro.


Subject(s)
Coated Materials, Biocompatible/pharmacology , Collagen Type I/pharmacology , Dental Pulp/drug effects , Fibronectins/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dental Pulp/cytology , Humans , Osteogenesis/drug effects
13.
Tissue Eng Part A ; 20(21-22): 3063-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24813721

ABSTRACT

Growth factors play an important role in osteo/odontogenic differentiation of human dental pulp cells (hDPCs). The aim of this in vitro study was to compare the biological effects of recombinant human growth differentiation factor 5 (rhGDF-5) alone and a cocktail of soluble growth factors (conditioned medium) released from human bone marrow mesenchymal stem cells (hBMMSCs) on the morphology, proliferation and osteo/odontogenic differentiation potential of hDPCs. Passage 4 hDPCs were harvested for culture in four different media: (a) DMEM with 10% FBS, (b) odontogenic induction medium (OM), (c) OM plus 500 ng/mL rhGDF-5, and (d) OM plus conditioned medium (CM). Morphological changes at 48 and 120 h were determined by crystal violet staining. The proliferation rates at 3, 24, 48, and 120 h were assayed by MTT. Using real-time reverse transcription-polymerase chain reaction (RT-PCR), the mRNA levels of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), collagen type I (Col 1), Runt-related transcription factor 2 (Cbfa1/Runx2), alkaline phosphatase (ALP), osteocalcin (OC), ß3 tubulin (TUBB3), glial cell-derived neurotrophic factor (GDNF), angiopoietin-1 (Ang1), and vascular endothelial growth factor A (VEGFA), were determined at 2, 5, and 9 days. Protein expression of dental sialoprotein (DSP), DMP1, OC, and TUBB3 was recorded at 5 days, using western blot and immunocytochemistry. The effect of the different culture media on mineralization was determined by ALP staining at day 5 and Alizarin red S staining at days 7 and 14. In response to the different culture media, the shape of the hDPCs varied from spindled to polygonal and cuboidal. CM inhibited the cellular proliferation rate, while rhGDF-5 had no effect at early time points, but promoted cellular proliferation at 120 h of culture. In the CM group, the mRNA levels of Cbfa1/Runx2, Col 1, ALP, VEGFA, Ang1, and TUBB3 decreased and the levels of GDNF and OC increased. The mRNA levels of DSPP and DMP1 were inconsistent at the time points evaluated. The staining assays also demonstrated that compared with the other groups, the CM group exhibited lower expression of ALP and higher mineralization levels. Protein expression of DSP, DMP1, OC, and TUBB3 was pronounced by the CM-treated cells. It is concluded that under these in vitro conditions, CM released from hBMMSCs have a greater osteo/odontogenic inductive effect on hDPCs than rhGDF-5.


Subject(s)
Bone Marrow Cells/metabolism , Dental Pulp/cytology , Intercellular Signaling Peptides and Proteins/pharmacology , Mesenchymal Stem Cells/metabolism , Odontogenesis/physiology , Osteogenesis/physiology , Paracrine Communication/physiology , Adolescent , Adult , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Dental Pulp/drug effects , Female , Humans , Male , Odontogenesis/drug effects , Osteogenesis/drug effects , Tissue Engineering/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL