Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794555

ABSTRACT

This review thoroughly investigates the mechanical recycling of carbon fiber-reinforced polymer composites (CFRPCs), a critical area for sustainable material management. With CFRPC widely used in high-performance areas like aerospace, transportation, and energy, developing effective recycling methods is essential for tackling environmental and economic issues. Mechanical recycling stands out for its low energy consumption and minimal environmental impact. This paper reviews current mechanical recycling techniques, highlighting their benefits in terms of energy efficiency and material recovery, but also points out their challenges, such as the degradation of mechanical properties due to fiber damage and difficulties in achieving strong interfacial adhesion in recycled composites. A novel part of this review is the use of finite element analysis (FEA) to predict the behavior of recycled CFRPCs, showing the potential of recycled fibers to preserve structural integrity and performance. This review also emphasizes the need for more research to develop standardized mechanical recycling protocols for CFRPCs that enhance material properties, optimize recycling processes, and assess environmental impacts thoroughly. By combining experimental and numerical studies, this review identifies knowledge gaps and suggests future research directions. It aims to advance the development of sustainable, efficient, and economically viable CFRPC recycling methods. The insights from this review could significantly benefit the circular economy by reducing waste and enabling the reuse of valuable carbon fibers in new composite materials.

2.
Polymers (Basel) ; 14(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35746016

ABSTRACT

In this research study, three carbon fillers of varying dimensionality in the form of graphite (3D), graphite nano-platelets (2D), and multiwall carbon nanotubes (1D) were incorporated into a matrix of poly (ethylene terephthalate), forming carbon-reinforced polymer composites. Melt compounding was followed by compression moulding and then a quenching process for some of the samples to inhibit crystallization. The samples were analysed using dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM), considering the dimensionality and loading of the carbon fillers. The dynamic mechanical analysis revealed a similar decline of storage moduli for all composites during the glassy to rubbery transition. However, storage moduli values at room temperature increased with higher loading of nano-fillers but only to a certain level; followed by a reduction attributed to the formation of agglomerates of nanotubes and/or rolled up of nano-platelets, as observed by SEM. Much greater reinforcement was observed for the carbon nanotubes compared to the graphite and or the graphite nano-platelets. The quenched PET samples showed significant changes in their dynamic mechanical properties due to both filler addition and to cold crystallization during the DMTA heating cycle. The magnitude of changes due to filler dimensionality was found to follow the order: 1D > 2D > 3D, this carbon filler with lower dimensionality have a more significant effect on the viscoelastic properties of polymer composite materials.

3.
Polymers (Basel) ; 14(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566884

ABSTRACT

In this work, graphite nanoplatelets (GNP) were incorporated into poly (ethylene terephthalate) (PET) matrix to prepare PET-GNP nanocomposites using a melt compounding followed by compression moulding and then quenching process. Both static and dynamic mechanical properties of these quenched materials were characterized as a function of GNP contents using dynamic mechanical thermal analysis (DMTA) and tensile machine, respectively. The results demonstrated that the addition of GNP improved the stiffness of PET significantly. Additionally, the maximum increase in the storage modulus of 72% at 6 wt.% GNP. The incorporation of GNP beyond 6 wt.% into PET decreases the storage moduli, but they remain higher than pure PET. The observed reduction could be due to agglomeration, resulting in poorer dispersion and distribution of higher levels of GNP into the PET matrix. In contrast to the results for moduli, tensile strength and elongations at break reduce with increasing the GNP content. For example, tensile strength reduced from ∼46 MPa (neat PET) to ∼39 MPa (-15%) for the nanocomposites containing 2 wt.% GNP. This reduction is accompanied by a decline in elongation at break from ∼6.3 (neat PET) to ∼3.4 (-46%) for the same nanocomposites. Such reductions are followed by a gradual decrease in upon further addition of GNP. These reductions indicate that increasing GNP loadings, results in brittleness in nanocomposites. In addition, it was found that quenched PET and composite samples were not fully crystallized after processing and therefore (cold) crystallized during the first heating cycle DMTA, as indicated by a rise in storage moduli above the glass transition temperature during the DMTA first heat. Furthermore, mathematical models based on non-linear theories are developed to capture the experimental data. For this, a set of mechanical stress-strain data is used for model parameters' identification. Another set of data is used for the model validation that demonstrates good agreements with the experimental study.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35159770

ABSTRACT

Carbon felt (CF) is an inexpensive carbon-based material that is highly conductive and features extraordinary inherent surface area. Using such a metal-free, low-cost material for energy storage applications can benefit their practical implementation; however, only limited success has been achieved using metal-free CF for supercapacitor electrodes. This work thoroughly studies a cost-effective and simple method for activating metal-free self-supported carbon felt. As-received CF samples were first chemically modified with an acidic mixture, then put through a time optimization two-step electrochemical treatment in inorganic salts. The initial oxidative exfoliation process enhances the fiber's surface area and ultimately introduced oxygen functional groups to the surface, whereas the subsequent reduction process substantially improved the conductivity. We achieved a 205-fold enhancement of capacitance over the as-received CF, with a maximum specific capacitance of 205 Fg-1, while using a charging current density of 23 mAg-1. Additionally, we obtained a remarkable capacitance retention of 78% upon increasing the charging current from 0.4 to 1 Ag-1. Finally, the cyclic stability reached 87% capacitance retention after 2500 cycles. These results demonstrate the potential utility of electrochemically activated CF electrodes in supercapacitor devices.

SELECTION OF CITATIONS
SEARCH DETAIL