Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Curr Dev Nutr ; 6(9): nzac123, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36157849

ABSTRACT

The relation among the various causal factors of obesity is not well understood, and there remains a lack of viable data to advance integrated, systems models of its etiology. The collection of big data has begun to allow the exploration of causal associations between behavior, built environment, and obesity-relevant health outcomes. Here, the traditional epidemiologic and emerging big data approaches used in obesity research are compared, describing the research questions, needs, and outcomes of 3 broad research domains: eating behavior, social food environments, and the built environment. Taking tangible steps at the intersection of these domains, the recent European Union project "BigO: Big data against childhood obesity" used a mobile health tool to link objective measurements of health, physical activity, and the built environment. BigO provided learning on the limitations of big data, such as privacy concerns, study sampling, and the balancing of epidemiologic domain expertise with the required technical expertise. Adopting big data approaches will facilitate the exploitation of data concerning obesity-relevant behaviors of a greater variety, which are also processed at speed, facilitated by mobile-based data collection and monitoring systems, citizen science, and artificial intelligence. These approaches will allow the field to expand from causal inference to more complex, systems-level predictive models, stimulating ambitious and effective policy interventions.

2.
JMIR Mhealth Uhealth ; 9(7): e26290, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34048353

ABSTRACT

BACKGROUND: Obesity is a major public health problem globally and in Europe. The prevalence of childhood obesity is also soaring. Several parameters of the living environment are contributing to this increase, such as the density of fast food retailers, and thus, preventive health policies against childhood obesity must focus on the environment to which children are exposed. Currently, there are no systems in place to objectively measure the effect of living environment parameters on obesogenic behaviors and obesity. The H2020 project "BigO: Big Data Against Childhood Obesity" aims to tackle childhood obesity by creating new sources of evidence based on big data. OBJECTIVE: This paper introduces the Obesity Prevention dashboard (OPdashboard), implemented in the context of BigO, which offers an interactive data platform for the exploration of objective obesity-related behaviors and local environments based on the data recorded using the BigO mHealth (mobile health) app. METHODS: The OPdashboard, which can be accessed on the web, allows for (1) the real-time monitoring of children's obesogenic behaviors in a city area, (2) the extraction of associations between these behaviors and the local environment, and (3) the evaluation of interventions over time. More than 3700 children from 33 schools and 2 clinics in 5 European cities have been monitored using a custom-made mobile app created to extract behavioral patterns by capturing accelerometer and geolocation data. Online databases were assessed in order to obtain a description of the environment. The dashboard's functionality was evaluated during a focus group discussion with public health experts. RESULTS: The preliminary association outcomes in 2 European cities, namely Thessaloniki, Greece, and Stockholm, Sweden, indicated a correlation between children's eating and physical activity behaviors and the availability of food-related places or sports facilities close to schools. In addition, the OPdashboard was used to assess changes to children's physical activity levels as a result of the health policies implemented to decelerate the COVID-19 outbreak. The preliminary outcomes of the analysis revealed that in urban areas the decrease in physical activity was statistically significant, while a slight increase was observed in the suburbs. These findings indicate the importance of the availability of open spaces for behavioral change in children. Discussions with public health experts outlined the dashboard's potential to aid in a better understanding of the interplay between children's obesogenic behaviors and the environment, and improvements were suggested. CONCLUSIONS: Our analyses serve as an initial investigation using the OPdashboard. Additional factors must be incorporated in order to optimize its use and obtain a clearer understanding of the results. The unique big data that are available through the OPdashboard can lead to the implementation of models that are able to predict population behavior. The OPdashboard can be considered as a tool that will increase our understanding of the underlying factors in childhood obesity and inform the design of regional interventions both for prevention and treatment.


Subject(s)
COVID-19 , Child , Europe , Greece , Humans , SARS-CoV-2 , Sweden
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5876-5879, 2020 07.
Article in English | MEDLINE | ID: mdl-33019311

ABSTRACT

Obesity affects a rising percentage of the children and adolescent population, contributing to decreased quality of life and increased risk for comorbidities. Although the major causes of obesity are known, the obesogenic behaviors manifest as a result of complex interactions of the individual with the living environment. For this reason, addressing childhood obesity remains a challenging problem for public health authorities. The BigO project (https://bigoprogram.eu) relies on large-scale behavioral and environmental data collection to create tools that support policy making and intervention design. In this work, we propose a novel analysis approach for modeling the expected population behavior as a function of the local environment. We experimentally evaluate this approach in predicting the expected physical activity level in small geographic regions using urban environment characteristics. Experiments on data collected from 156 children and adolescents verify the potential of the proposed approach. Specifically, we train models that predict the physical activity level in a region, achieving 81% leave-one-out accuracy. In addition, we exploit the model predictions to automatically visualize heatmaps of the expected population behavior in areas of interest, from which we draw useful insights. Overall, the predictive models and the automatic heatmaps are promising tools in gaining direct perception for the spatial distribution of the population's behavior, with potential uses by public health authorities.


Subject(s)
Pediatric Obesity , Quality of Life , Adolescent , Child , Exercise , Humans , Pediatric Obesity/epidemiology , Public Health
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5864-5867, 2020 07.
Article in English | MEDLINE | ID: mdl-33019308

ABSTRACT

Obesity is a complex disease and its prevalence depends on multiple factors related to the local socioeconomic, cultural and urban context of individuals. Many obesity prevention strategies and policies, however, are horizontal measures that do not depend on context-specific evidence. In this paper we present an overview of BigO (http://bigoprogram.eu), a system designed to collect objective behavioral data from children and adolescent populations as well as their environment in order to support public health authorities in formulating effective, context-specific policies and interventions addressing childhood obesity. We present an overview of the data acquisition, indicator extraction, data exploration and analysis components of the BigO system, as well as an account of its preliminary pilot application in 33 schools and 2 clinics in four European countries, involving over 4,200 participants.


Subject(s)
Pediatric Obesity , Public Health , Adolescent , Child , Europe , Humans , Pediatric Obesity/epidemiology , Schools
SELECTION OF CITATIONS
SEARCH DETAIL