Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Proc Natl Acad Sci U S A ; 119(14): e2112886119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35363569

ABSTRACT

Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.


Subject(s)
Bacteria , Genome, Bacterial , Machine Learning , Virulence Factors , Whole Genome Sequencing , Bacteria/genetics , Bacteria/pathogenicity , Phenotype , Virulence/genetics , Virulence Factors/genetics
2.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298145

ABSTRACT

Hypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.


Subject(s)
Cardiovascular Diseases , Hypertension , Animals , Mice , Th17 Cells/metabolism , Blood Pressure , T-Lymphocytes, Regulatory/metabolism , Cardiovascular Diseases/metabolism , Tryptophan/metabolism , Hypertension/metabolism , Sodium Chloride/pharmacology , Sodium Chloride, Dietary/metabolism , Indoles/metabolism , Sodium/metabolism
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216335

ABSTRACT

Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.


Subject(s)
Aging/metabolism , Colitis/metabolism , Dysbiosis/metabolism , Receptors, Ghrelin/metabolism , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/physiology , Gastrointestinal Microbiome/physiology , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/physiology , Obesity/metabolism
4.
Molecules ; 26(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401401

ABSTRACT

There is a high level of interest in identifying metabolites of endogenously produced or dietary compounds generated by the gastrointestinal (GI) tract microbiota, and determining the functions of these metabolites in health and disease. There is a wealth of compelling evidence that the microbiota is linked with many complex chronic inflammatory diseases, including atherosclerosis. Macrophages are key target immune cells in atherosclerosis. A hallmark of atherosclerosis is the accumulation of pro-inflammatory macrophages in coronary arteries that respond to pro-atherogenic stimuli and failure of digesting lipids that contribute to foam cell formation in atherosclerotic plaques. This review illustrates the role of tryptophan-derived microbiota metabolites as an aryl hydrocarbon receptor (AhR) ligand that has immunomodulatory properties. Also, microbiota-dependent trimethylamine-N-oxide (TMAO) metabolite production is associated with a deleterious effect that promotes atherosclerosis, and metabolite indoxyl sulfate has been shown to exacerbate atherosclerosis. Our objective in this review is to discuss the role of microbiota-derived metabolites in atherosclerosis, specifically the consequences of microbiota-induced effects of innate immunity in response to atherogenic stimuli, and how specific beneficial/detrimental metabolites impact the development of atherosclerosis by regulating chronic endotoxemic and lipotoxic inflammation.


Subject(s)
Atherosclerosis , Foam Cells , Gastrointestinal Microbiome/immunology , Indican , Methylamines , Animals , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Atherosclerosis/pathology , Basic Helix-Loop-Helix Transcription Factors/immunology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Foam Cells/immunology , Foam Cells/metabolism , Foam Cells/pathology , Humans , Indican/immunology , Indican/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Methylamines/immunology , Methylamines/metabolism , Receptors, Aryl Hydrocarbon/immunology , Receptors, Aryl Hydrocarbon/metabolism
5.
FASEB J ; 32(6): 3085-3095, 2018 06.
Article in English | MEDLINE | ID: mdl-29405095

ABSTRACT

Based on genetic models with mutation or deletion of core clock genes, circadian disruption has been implicated in the pathophysiology of metabolic disorders. Thus, we examined whether circadian desynchronization in response to shift work-type schedules is sufficient to compromise metabolic homeostasis and whether inflammatory mediators provide a key link in the mechanism by which alterations of circadian timekeeping contribute to diet-induced metabolic dysregulation. In high-fat diet (HFD)-fed mice, exposure to chronic shifts of the light-dark cycle (12 h advance every 5 d): 1) disrupts photoentrainment of circadian behavior and modulates the period of spleen and macrophage clock gene rhythms; 2) potentiates HFD-induced adipose tissue infiltration and activation of proinflammatory M1 macrophages; 3) amplifies macrophage proinflammatory cytokine expression in adipose tissue and bone marrow-derived macrophages; and 4) exacerbates diet-induced increases in body weight, insulin resistance, and glucose intolerance in the absence of changes in total daily food intake. Thus, complete disruption of circadian rhythmicity or clock gene function as transcription factors is not requisite to the link between circadian and metabolic phenotypes. These findings suggest that macrophage proinflammatory activation and inflammatory signaling are key processes in the physiologic cascade by which dysregulation of circadian rhythmicity exacerbates diet-induced systemic insulin resistance and glucose intolerance.-Kim, S.-M., Neuendorff, N., Alaniz, R. C., Sun, Y., Chapkin, R. S., Earnest, D. J. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism.


Subject(s)
Adipose Tissue/metabolism , Circadian Rhythm/drug effects , Dietary Fats/adverse effects , Macrophages/metabolism , Signal Transduction/drug effects , Adipose Tissue/pathology , Animals , Cytokines/genetics , Cytokines/metabolism , Dietary Fats/pharmacology , Female , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages/pathology , Male , Mice , Mice, Transgenic
6.
Pharmacol Res ; 141: 521-529, 2019 03.
Article in English | MEDLINE | ID: mdl-30660825

ABSTRACT

There is increasing evidence that the intestinal microbiota plays a mechanistic role in the etiology of non-alcoholic fatty liver disease (NAFLD). Animal and human studies have linked small molecule metabolites produced by commensal bacteria in the gut contribute to not only intestinal inflammation, but also to hepatic inflammation. These immunomodulatory metabolites are capable of engaging host cellular receptors, and may mediate the observed association between gut dysbiosis and NAFLD. This review focuses on the effects and potential mechanisms of three specific classes of metabolites that synthesized or modified by gut bacteria: short chain fatty acids, amino acid catabolites, and bile acids. In particular, we discuss their role as ligands for cell surface and nuclear receptors regulating metabolic and inflammatory pathways in the intestine and liver. Studies reveal that the metabolites can both agonize and antagonize their cognate receptors to reduce or exacerbate liver steatosis and inflammation, and that the effects are metabolite- and context-specific. Further studies are warranted to more comprehensively understand bacterial metabolite-mediated gut-liver in NAFLD. This understanding could help identify novel therapeutics and therapeutic targets to intervene in the disease through the gut microbiota.


Subject(s)
Dysbiosis/complications , Dysbiosis/immunology , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/immunology , Amino Acids/immunology , Amino Acids/metabolism , Animals , Bacteria/immunology , Bacteria/metabolism , Bile Acids and Salts/immunology , Bile Acids and Salts/metabolism , Dysbiosis/metabolism , Fatty Acids, Volatile/immunology , Fatty Acids, Volatile/metabolism , Humans , Inflammation/etiology , Inflammation/immunology , Inflammation/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
7.
Biotechnol Bioeng ; 114(11): 2660-2667, 2017 11.
Article in English | MEDLINE | ID: mdl-28667749

ABSTRACT

Adoptive transfer of anti-inflammatory FOXP3+ Tregs has gained attention as a new therapeutic strategy for auto-inflammatory disorders such as Inflammatory Bowel Disease. The isolated cells are conditioned in vitro to obtain a sufficient number of anti-inflammatory FOXP3+ Tregs that can be reintroduced into the patient to potentially reduce the pathologic inflammatory response. Previous evidence suggests that microbiota metabolites can potentially condition cells during the in vitro expansion/differentiation step. However, the number of combinations of cytokines and metabolites that can be varied is large, preventing a purely experimental investigation which would determine optimal cell therapeutic outcomes. To address this problem, a combined experimental and modeling approached is investigated here: an artificial neural network model was trained to predict the steady-state T cell population phenotype after differentiation with a variety of host cytokines and the microbial metabolite indole. This artificial neural network model was able to both reliably predict the phenotype of these T cell populations and also uncover unexpected conditions for optimal Treg differentiation that were subsequently verified experimentally. Biotechnol. Bioeng. 2017;114: 2660-2667. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bacteria/immunology , Cytokines/immunology , Gastrointestinal Microbiome/immunology , Indoles/immunology , Lymphocyte Activation/immunology , Models, Immunological , T-Lymphocytes/immunology , Cells, Cultured , Humans , Neural Networks, Computer , T-Lymphocytes/classification
8.
J Biol Chem ; 289(23): 16374-88, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24770415

ABSTRACT

The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance.


Subject(s)
Bone Marrow Cells/metabolism , Diet, High-Fat , Inflammation/metabolism , Insulin Resistance , Period Circadian Proteins/metabolism , Adipocytes/metabolism , Animals , Coculture Techniques , Macrophages/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism
9.
Elife ; 122024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412016

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and ß-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Inflammation , Diet, Western/adverse effects , Cytokines , Dietary Supplements , Acetates , Indoles/pharmacology
10.
Proc Natl Acad Sci U S A ; 107(1): 228-33, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19966295

ABSTRACT

Interkingdom signaling is established in the gastrointestinal tract in that human hormones trigger responses in bacteria; here, we show that the corollary is true, that a specific bacterial signal, indole, is recognized as a beneficial signal in intestinal epithelial cells. Our prior work has shown that indole, secreted by commensal Escherichia coli and detected in human feces, reduces pathogenic E. coli chemotaxis, motility, and attachment to epithelial cells. However, the effect of indole on intestinal epithelial cells is not known. Because intestinal epithelial cells are likely to be exposed continuously to indole, we hypothesized that indole may be beneficial for these cells, and investigated changes in gene expression with the human enterocyte cell line HCT-8 upon exposure to indole. Exposure to physiologically relevant amounts of indole increased expression of genes involved in strengthening the mucosal barrier and mucin production, which were consistent with an increase in the transepithelial resistance of HCT-8 cells. Indole also decreased TNF-alpha-mediated activation of NF-kappaB, expression of the proinflammatory chemokine IL-8, and the attachment of pathogenic E. coli to HCT-8 cells, as well as increased expression of the antiinflammatory cytokine IL-10. The changes in transepithelial resistance and NF-kappaB activation were specific to indole: other indole-like molecules did not elicit a similar response. Our results are similar to those observed with probiotic strains and suggest that indole could be important in the intestinal epithelial cells response to gastrointestinal tract pathogens.


Subject(s)
Bacteria/metabolism , Epithelial Cells/metabolism , Indoles/metabolism , Inflammation/metabolism , Signal Transduction/physiology , Tight Junctions/metabolism , Bacteria/chemistry , Cell Line , Chemokines/immunology , Cytokines/immunology , Epithelial Cells/cytology , Humans , Microarray Analysis , NF-kappa B/genetics , NF-kappa B/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
11.
J Transl Autoimmun ; 6: 100198, 2023.
Article in English | MEDLINE | ID: mdl-37090898

ABSTRACT

Autoimmune diseases such as rheumatoid arthritis and type 1 diabetes are increasingly common global problems. Concerns about increases in the prevalence of such diseases and the limited efficacy of conventional treatment regimens necessitates new therapies to address these challenges. Autoimmune disease severity and dysbiosis are interconnected. Although probiotics have been established as a therapy to rebalance the microbiome and suppress autoimmune symptoms, these microbes tend to lack a number of advantageous qualities found in non-commensal bacteria. Through attenuation and genetic manipulation, these non-commensal bacteria have been engineered into recombinant forms that offer malleable platforms capable of addressing the immune imbalances found in RA and T1D. Such bacteria have been engineered to express valuable gene products known to suppress autoimmunity such as anti-inflammatory cytokines, autoantigens, and enzymes synthesizing microbial metabolites. This review will highlight current and emerging trends in the field and discuss how they may be used to prevent and control autoimmune diseases.

12.
Am J Physiol Gastrointest Liver Physiol ; 302(1): G153-67, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21940900

ABSTRACT

The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)-δ is highly expressed in colonic epithelial cells; however, the role of PPARδ ligands, such as fatty acids, in mucosal inflammation and malignant transformation has not been clarified. Recent evidence suggests that the anti-inflammatory/chemoprotective properties of fish oil (FO)-derived n-3 polyunsaturated fatty acids (PUFAs) may be partly mediated by PPARδ. Therefore, we assessed the role of PPARδ in modulating the effects of dietary n-3 PUFAs by targeted deletion of intestinal epithelial cell PPARδ (PPARδ(ΔIEpC)). Subsequently, we documented changes in colon tumorigenesis and the inflammatory microenvironment, i.e., local [mesenteric lymph node (MLN)] and systemic (spleen) T cell activation. Animals were fed chemopromotive [corn oil (CO)] or chemoprotective (FO) diets during the induction of chronic inflammation/carcinogenesis. Tumor incidence was similar in control and PPARδ(ΔIEpC) mice. FO reduced mucosal injury, tumor incidence, colonic STAT3 activation, and inflammatory cytokine gene expression, independent of PPARδ genotype. CD8(+) T cell recruitment into MLNs was suppressed in PPARδ(ΔIEpC) mice. Similarly, FO reduced CD8(+) T cell numbers in the MLN. Dietary FO independently modulated MLN CD4(+) T cell activation status by decreasing CD44 expression. CD11a expression by MLN CD4(+) T cells was downregulated in PPARδ(ΔIEpC) mice. Lastly, splenic CD62L expression was downregulated in PPARδ(ΔIEpC) CD4(+) and CD8(+) T cells. These data demonstrate that expression of intestinal epithelial cell PPARδ does not influence azoxymethane/dextran sodium sulfate-induced colon tumor incidence. Moreover, we provide new evidence that dietary n-3 PUFAs attenuate intestinal inflammation in an intestinal epithelial cell PPARδ-independent manner.


Subject(s)
Adenocarcinoma/drug therapy , Cell Transformation, Neoplastic/drug effects , Colitis/drug therapy , Colonic Neoplasms/drug therapy , Dietary Fats, Unsaturated/pharmacology , Fish Oils/pharmacology , Gene Deletion , PPAR delta/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Animals , CD11a Antigen/biosynthesis , CD11a Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Chronic Disease , Colitis/genetics , Colitis/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Cytokines/biosynthesis , Dietary Fats, Unsaturated/immunology , Dietary Fats, Unsaturated/metabolism , Female , Fish Oils/immunology , Hyaluronan Receptors/biosynthesis , Hyaluronan Receptors/immunology , Intestinal Mucosa/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , PPAR delta/genetics , PPAR delta/immunology , STAT3 Transcription Factor/biosynthesis , Spleen/drug effects , Spleen/immunology
13.
J Nutr ; 142(1): 117-24, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22131549

ABSTRACT

During colon inflammation, Th17 cells and immunosuppressive regulatory T cells (Treg) are thought to play promotive and preventative roles, respectively. Dietary (n-3) PUFA favorably modulate intestinal inflammation in part by downregulating T-cell activation and functionality. We used the Fat-1 mouse, a genetic model that synthesizes long-chain (n-3) PUFA de novo, to test the hypothesis that (n-3) PUFA protect against colonic inflammation by modulating the polarization of Treg and Th17 cells during colitis. Male and female wild-type (WT) and Fat-1 mice were administered dextran sodium sulfate (DSS) in the drinking water (2.5%) to induce acute (5 d DSS) or chronic (3 cycles DSS) colitis and the percentage of Treg and Th17 cells residing locally [colonic lamina propria (cLP)] and systemically (spleen) was determined by flow cytometry. The percentage of Treg in either tissue site was unaffected by genotype (P > 0.05); however, during chronic colitis, the percentage of Th17 cells residing in both the spleen and cLP was lower in Fat-1 mice compared to WT mice (P < 0.05). Colonic mucosal mRNA expression of critical Th17 cell cytokines and chemokine receptors (IL-17F, IL-21, and CCR6) were lower, whereas expression of the Th17 cell suppressive cytokine, IL-27, was greater in Fat-1 mice compared to WT mice during chronic colitis (P < 0.05). Moreover, colon histological scores were improved in Fat-1 mice (P < 0.05). Collectively, these results demonstrate for the first time, to our knowledge, that (n-3) PUFA can modulate the colonic mucosal microenvironment to suppress Th17 cell accumulation and inflammatory damage following the induction of chronic colitis.


Subject(s)
Colitis/immunology , Fatty Acids, Omega-3/administration & dosage , Th17 Cells/immunology , Animals , Chronic Disease , Colitis/metabolism , Colitis/pathology , Cytokines/metabolism , Female , Flow Cytometry , Male , Mice , Mice, Mutant Strains
14.
Genes (Basel) ; 13(5)2022 04 25.
Article in English | MEDLINE | ID: mdl-35627141

ABSTRACT

The implication of the heterogeneous spectrum of pro- and anti-inflammatory macrophages (Macs) has been an important area of investigation over the last decade. The polarization of Macs alters their functional phenotype in response to their surrounding microenvironment. Macs are the major immune cells implicated in the pathogenesis of atherosclerosis. A hallmark pathology of atherosclerosis is the accumulation of pro-inflammatory M1-like macrophages in coronary arteries induced by pro-atherogenic stimuli; these M1-like pro-inflammatory macrophages are incapable of digesting lipids, thus resulting in foam cell formation in the atherosclerotic plaques. Recent findings suggest that the progression and stability of atherosclerotic plaques are dependent on the quantity of infiltrated Macs, the polarization state of the Macs, and the ratios of different types of Mac populations. The polarization of Macs is defined by signature markers on the cell surface, as well as by factors in intracellular and intranuclear compartments. At the same time, pro- and anti-inflammatory polarized Macs also exhibit different gene expression patterns, with differential cellular characteristics in oxidative phosphorylation and glycolysis. Macs are reflective of different metabolic states and various types of diseases. In this review, we discuss the major differences between M1-like Macs and M2-like Macs, their associated metabolic pathways, and their roles in atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , Macrophage Activation , Macrophages/metabolism , Phenotype , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism
15.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-34987022

ABSTRACT

The tumor microenvironment (TME) is characterized by the activation of immune checkpoints, which limit the ability of immune cells to attack the growing cancer. To overcome immune suppression in the clinic, antigen-expressing viruses and bacteria have been developed to induce antitumor immunity. However, the safety and targeting specificity are the main concerns of using bacteria in clinical practice as antitumor agents. In our previous studies, we have developed an attenuated bacterial strain (Brucella melitensis 16M ∆vjbR, henceforth Bm∆vjbR) for clinical use, which is safe in all tested animal models and has been removed from the select agent list by the Centers for Disease Control and Prevention. In this study, we demonstrated that Bm∆vjbR homed to tumor tissue and improved the TME in a murine model of solid cancer. In addition, live Bm∆vjbR promoted proinflammatory M1 polarization of tumor macrophages and increased the number and activity of CD8+ T cells in the tumor. In a murine colon adenocarcinoma model, when combined with adoptive transfer of tumor-specific carcinoembryonic antigen chimeric antigen receptor CD8+ T cells, tumor cell growth and proliferation was almost completely abrogated, and host survival was 100%. Taken together, these findings demonstrate that the live attenuated bacterial treatment can defeat cancer resistance to chimeric antigen receptor T-cell therapy by remodeling the TME to promote macrophage and T cell-mediated antitumor immunity.


Subject(s)
Bacteria/pathogenicity , Immunotherapy/methods , Neoplasm Recurrence, Local/microbiology , Neoplasms/microbiology , Receptors, Chimeric Antigen/immunology , Animals , Disease Models, Animal , Humans , Mice , Tumor Microenvironment
16.
Sci Adv ; 8(5): eabl9783, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35108044

ABSTRACT

eEF-2K has important roles in stress responses and cellular metabolism. We report here a previously unappreciated but critical role of eEF-2K in regulating the fate and cytocidal activity of CD8+ T cells. CD8+ T cells from eEF-2K KO mice were more proliferative but had lower survival than their wild-type counterparts after their activation, followed by occurrence of premature senescence and exhaustion. eEF-2K KO CD8+ T cells were more metabolically active and showed hyperactivation of the Akt-mTOR-S6K pathway. Loss of eEF-2K substantially impaired the activity of CD8+ T cells. Furthermore, the antitumor efficacy and tumor infiltration of the CAR-CD8+ T cells lacking eEF-2K were notably reduced as compared to the control CAR-CD8+ T cells. Thus, eEF-2K is critically required for sustaining the viability and function of cytotoxic CD8+ T cells, and therapeutic augmentation of this kinase may be exploited as a novel approach to reinforcing CAR-T therapy against cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Elongation Factor 2 Kinase/metabolism , Neoplasms , Animals , Mice , Neoplasms/therapy , Peptide Elongation Factors
17.
Gut Microbes ; 14(1): 2143222, 2022.
Article in English | MEDLINE | ID: mdl-36404471

ABSTRACT

Immunotherapy has led to impressive advances in the treatment of autoimmune and pro-inflammatory disorders; yet, its clinical outcomes remain limited by a variety of factors including the pro-inflammatory microenvironment (IME). Discovering effective immunomodulatory agents, and the mechanisms by which they control disease, will lead to innovative strategies for enhancing the effectiveness of current immunotherapeutic approaches. We have metabolically engineered an attenuated bacterial strain (i.e., Brucella melitensis 16M ∆vjbR, Bm∆vjbR::tnaA) to produce indole, a tryptophan metabolite that controls the fate and function of regulatory T (Treg) cells. We demonstrated that treatment with Bm∆vjbR::tnaA polarized macrophages (Mφ) which produced anti-inflammatory cytokines (e.g., IL-10) and promoted Treg function; moreover, when combined with adoptive cell transfer (ACT) of Treg cells, a single treatment with our engineered bacterial strain dramatically reduced the incidence and score of autoimmune arthritis and decreased joint damage. These findings show how a metabolically engineered bacterium can constitute a powerful vehicle for improving the efficacy of immunotherapy, defeating autoimmunity, and reducing inflammation by remodeling the IME and augmenting Treg cell function.


Subject(s)
Autoimmunity , Gastrointestinal Microbiome , Humans , Inflammation , Cytokines/metabolism , T-Lymphocytes, Regulatory , Bacteria/metabolism
18.
Sci Adv ; 8(26): eabo0183, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35767626

ABSTRACT

We report here that nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the Broad-complex, Tramtrack, Bric-a-brac/poxvirus and zinc finger (BTB/POZ) gene family, is a negative regulator of FoxP3 in regulatory T cells (Tregs) and a critical determinant of immune tolerance. Phenotypically, NAC1-/- mice showed substantial tolerance to the induction of autoimmunity and generated a larger amount of CD4+ Tregs that exhibit a higher metabolic profile and immune-suppressive activity, increased acetylation and expression of FoxP3, and slower turnover of this transcription factor. Treatment of Tregs with the proinflammatory cytokines interleukin-1ß or tumor necrosis factor-α induced a robust up-regulation of NAC1 but evident down-regulation of FoxP3 as well as the acetylated FoxP3. These findings imply that NAC1 acts as a trigger of the immune response through destabilization of Tregs and suppression of tolerance induction, and targeting of NAC1 warrants further exploration as a potential tolerogenic strategy for treatment of autoimmune disorders.

19.
Br J Nutr ; 106(4): 519-29, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21401974

ABSTRACT

Both fish oil (FO) and curcumin have potential as anti-tumour and anti-inflammatory agents. To further explore their combined effects on dextran sodium sulphate (DSS)-induced colitis, C57BL/6 mice were randomised to four diets (2 × 2 design) differing in fatty acid content with or without curcumin supplementation (FO, FO+2 % curcumin, maize oil (control, MO) or MO+2 % curcumin). Mice were exposed to one or two cycles of DSS in the drinking-water to induce either acute or chronic intestinal inflammation, respectively. FO-fed mice exposed to the single-cycle DSS treatment exhibited the highest mortality (40 %, seventeen of forty-three) compared with MO with the lowest mortality (3 %, one of twenty-nine) (P = 0·0008). Addition of curcumin to MO increased (P = 0·003) mortality to 37 % compared with the control. Consistent with animal survival data, following the one- or two-cycle DSS treatment, both dietary FO and curcumin promoted mucosal injury/ulceration compared with MO. In contrast, compared with other diets, combined FO and curcumin feeding enhanced the resolution of chronic inflammation and suppressed (P < 0·05) a key inflammatory mediator, NF-κB, in the colon mucosa. Mucosal microarray analysis revealed that dietary FO, curcumin and FO plus curcumin combination differentially modulated the expression of genes induced by DSS treatment. These results suggest that dietary lipids and curcumin interact to regulate mucosal homeostasis and the resolution of chronic inflammation in the colon.


Subject(s)
Colitis/diet therapy , Colon/metabolism , Curcumin/therapeutic use , Cytokines/metabolism , Dietary Supplements , Fish Oils/therapeutic use , Gene Expression Regulation , Acute Disease , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Chronic Disease , Colitis/immunology , Colitis/metabolism , Colitis/pathology , Colon/drug effects , Colon/immunology , Colon/pathology , Curcumin/adverse effects , Cytokines/genetics , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Fish Oils/adverse effects , Gene Expression Profiling , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Irritants/administration & dosage , Irritants/toxicity , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Random Allocation , Survival Analysis
20.
J Vis Exp ; (168)2021 02 07.
Article in English | MEDLINE | ID: mdl-33616101

ABSTRACT

Macrophages are among the most important antigen-presenting cells. Many subsets of macrophages have been identified with unique metabolic signatures. Macrophages are commonly classified as M1-like (inflammatory) and M2-like (anti-inflammatory) subtypes. M1-like macrophages are pro-inflammatory macrophages that get activated by LPS and/or pro-inflammatory cytokines such as INF-γ, IL-12 & IL-2. M1-like polarized macrophages are involved in various diseases by mediating the host's defense to a variety of bacteria and viruses. That is very important to study LPS induced M1-like macrophages and their metabolic states in inflammatory diseases. M2-like macrophages are considered anti-inflammatory macrophages, activated by anti-inflammatory cytokines and stimulators. Under the pro-inflammatory state, macrophages show increased glycolysis in glycolytic function. The glycolytic function has been actively investigated in the context of glycolysis, glycolytic capacity, glycolytic reserve, compensatory glycolysis, or non-glycolytic acidification using extracellular flux (XF) analyzers. This paper demonstrates how to assess the glycolytic states in real-time with easy-to-follow steps when the bone marrow-derived macrophages (BMDMs) are respiring, consuming, and producing energy. Using specific inhibitors and activators of glycolysis in this protocol, we show how to obtain a systemic and complete view of glycolytic metabolic processes in the cells and provide more accurate and realistic results. To be able to measure multiple glycolytic phenotypes, we provide an easy, sensitive, DNA-based normalization method for polarization assessment of BMDMs. Culturing, activation/polarization and identification of the phenotype and metabolic state of the BMDMs are crucial techniques that can help to investigate many different types of diseases. In this paper, we polarized the naïve M0 macrophages to M1-like and M2-like macrophages with LPS and IL4, respectively, and measured a comprehensive set of glycolytic parameters in BMDMs in real-time and longitudinally over time, using extracellular flux analysis and glycolytic activators and inhibitors.


Subject(s)
Cell Culture Techniques/methods , Cell Polarity , Cell Separation/methods , Glycolysis , Macrophages/cytology , Animals , Biological Assay , Cell Fractionation , Cells, Cultured , Energy Metabolism , Erythrocytes/cytology , Femur/cytology , Macrophages/metabolism , Mice, Inbred C57BL , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL