Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Acta Neuropathol ; 147(1): 85, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38758238

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.


Subject(s)
Loss of Heterozygosity , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Loss of Heterozygosity/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/therapy , Male , Female , Middle Aged , Adult , Aged , Retrospective Studies , Mutation/genetics , Prospective Studies
2.
Blood Adv ; 7(23): 7319-7328, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37874915

ABSTRACT

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterized by the accumulation of clonal mononuclear phagocyte system cells expressing CD1a and CD207. In the past decade, molecular profiling of LCH as well as other histiocytic neoplasms demonstrated that these diseases are driven by MAPK activating alterations, with somatic BRAFV600E mutations in >50% of patients with LCH, and clinical inhibition of MAPK signaling has demonstrated remarkable clinical efficacy. At the same time, activating alterations in kinase-encoding genes, such as PIK3CA, ALK, RET, and CSF1R, which can activate mitogenic pathways independent from the MAPK pathway, have been reported in a subset of histiocytic neoplasms with anecdotal evidence of successful targeted treatment of histiocytoses harboring driver alterations in RET, ALK, and CSF1R. However, evidence supporting the biological consequences of expression of PIK3CA mutations in hematopoietic cells has been lacking, and whether targeted inhibition of PI3K is clinically efficacious in histiocytic neoplasms is unknown. Here, we provide evidence that activating mutations in PIK3CA can drive histiocytic neoplasms in vivo using a conditional knockin mouse expressing mutant PIK3CAH1047R in monocyte/dendritic cell progenitors. In parallel, we demonstrate successful treatment of PIK3CA-mutated, multisystemic LCH using alpelisib, an inhibitor of the alpha catalytic subunit of PI3K. Alpelisib demonstrated a tolerable safety profile at a dose of 750 mg per week and clinical and metabolic complete remission in a patient with PIK3CA-mutated LCH. These data demonstrate PIK3CA as a targetable noncanonical driver of LCH and underscore the importance of mutational analysis-based personalized treatment in histiocytic neoplasms.


Subject(s)
Hematologic Neoplasms , Histiocytosis, Langerhans-Cell , Humans , Animals , Mice , Proto-Oncogene Proteins B-raf/genetics , Histiocytosis, Langerhans-Cell/drug therapy , Receptor Protein-Tyrosine Kinases , Phosphatidylinositol 3-Kinases/therapeutic use , Class I Phosphatidylinositol 3-Kinases/genetics
3.
Clin Cancer Res ; 29(13): 2445-2455, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36862133

ABSTRACT

PURPOSE: To overcome barriers to genomic testing for patients with rare cancers, we initiated a program to offer free clinical tumor genomic testing worldwide to patients with select rare cancer subtypes. EXPERIMENTAL DESIGN: Patients were recruited through social media outreach and engagement with disease-specific advocacy groups, with a focus on patients with histiocytosis, germ cell tumors (GCT), and pediatric cancers. Tumors were analyzed using the MSK-IMPACT next-generation sequencing assay with the return of results to patients and their local physicians. Whole-exome recapture was performed for female patients with GCTs to define the genomic landscape of this rare cancer subtype. RESULTS: A total of 333 patients were enrolled, and tumor tissue was received for 288 (86.4%), with 250 (86.8%) having tumor DNA of sufficient quality for MSK-IMPACT testing. Eighteen patients with histiocytosis have received genomically guided therapy to date, of whom 17 (94%) have had clinical benefit with a mean treatment duration of 21.7 months (range, 6-40+). Whole-exome sequencing of ovarian GCTs identified a subset with haploid genotypes, a phenotype rarely observed in other cancer types. Actionable genomic alterations were rare in ovarian GCT (28%); however, 2 patients with ovarian GCTs with squamous transformation had high tumor mutational burden, one of whom had a complete response to pembrolizumab. CONCLUSIONS: Direct-to-patient outreach can facilitate the assembly of cohorts of rare cancers of sufficient size to define their genomic landscape. By profiling tumors in a clinical laboratory, results could be reported to patients and their local physicians to guide treatment. See related commentary by Desai and Subbiah, p. 2339.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Ovarian Neoplasms , Humans , Female , Mutation , Genomics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Exome
SELECTION OF CITATIONS
SEARCH DETAIL