Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Bioinformatics ; 21(Suppl 6): 265, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33203353

ABSTRACT

BACKGROUND: All molecular functions and biological processes are carried out by groups of proteins that interact with each other. Metaproteomic data continuously generates new proteins whose molecular functions and relations must be discovered. A widely accepted structure to model functional relations between proteins are protein-protein interaction networks (PPIN), and their analysis and alignment has become a key ingredient in the study and prediction of protein-protein interactions, protein function, and evolutionary conserved assembly pathways of protein complexes. Several PPIN aligners have been proposed, but attaining the right balance between network topology and biological information is one of the most difficult and key points in the design of any PPIN alignment algorithm. RESULTS: Motivated by the challenge of well-balanced and efficient algorithms, we have designed and implemented AligNet, a parameter-free pairwise PPIN alignment algorithm aimed at bridging the gap between topologically efficient and biologically meaningful matchings. A comparison of the results obtained with AligNet and with the best aligners shows that AligNet achieves indeed a good balance between topological and biological matching. CONCLUSION: In this paper we present AligNet, a new pairwise global PPIN aligner that produces biologically meaningful alignments, by achieving a good balance between structural matching and protein function conservation, and more efficient computations than state-of-the-art tools.


Subject(s)
Protein Interaction Mapping , Protein Interaction Maps , Proteins , Algorithms , Biological Evolution , Proteins/metabolism
2.
PLoS One ; 12(10): e0186626, 2017.
Article in English | MEDLINE | ID: mdl-29023538

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0177031.].

3.
PLoS One ; 12(5): e0177031, 2017.
Article in English | MEDLINE | ID: mdl-28493998

ABSTRACT

In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research.


Subject(s)
Metabolic Networks and Pathways , Metabolomics/methods , Algorithms , Computer Graphics , Glycolysis , Humans , Models, Biological , Purines/metabolism
4.
BMC Syst Biol ; 8: 58, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24886436

ABSTRACT

BACKGROUND: Comparing the metabolic pathways of different species is useful for understanding metabolic functions and can help in studying diseases and engineering drugs. Several comparison techniques for metabolic pathways have been introduced in the literature as a first attempt in this direction. The approaches are based on some simplified representation of metabolic pathways and on a related definition of a similarity score (or distance measure) between two pathways. More recent comparative research focuses on alignment techniques that can identify similar parts between pathways. RESULTS: We propose a methodology for the pairwise comparison and alignment of metabolic pathways that aims at providing the largest conserved substructure of the pathways under consideration. The proposed methodology has been implemented in a tool called MP-Align, which has been used to perform several validation tests. The results showed that our similarity score makes it possible to discriminate between different domains and to reconstruct a meaningful phylogeny from metabolic data. The results further demonstrate that our alignment algorithm correctly identifies subpathways sharing a common biological function. CONCLUSION: The results of the validation tests performed with MP-Align are encouraging. A comparison with another proposal in the literature showed that our alignment algorithm is particularly well-suited to finding the largest conserved subpathway of the pathways under examination.


Subject(s)
Computational Biology/methods , Metabolic Networks and Pathways , Algorithms , Computer Graphics , Glycolysis , Reproducibility of Results , Species Specificity
5.
PLoS One ; 6(6): e20889, 2011.
Article in English | MEDLINE | ID: mdl-21738592

ABSTRACT

BACKGROUND: When a researcher uses a program to align two proteins and gets a score, one of her main concerns is how often the program gives a similar score to pairs that are or are not in the same fold. This issue was analysed in detail recently for the program TM-align with its associated TM-score. It was shown that because the TM-score is length independent, it allows a P-value and a hit probability to be defined depending only on the score. Also, it was found that the TM-scores of gapless alignments closely follow an Extreme Value Distribution (EVD). The program ProtDeform for structural protein alignment was developed recently and is characterised by the ability to propose different transformations of different protein regions. Our goal is to analyse its associated score to allow a researcher to have objective reasons to prefer one aligner over another, and carry out a better interpretation of the output. RESULTS: The study on the ProtDeform score reveals that it is length independent in a wider score range than TM-scores and that PD-scores of gapless (random) alignments also approximately follow an EVD. On the CASP8 predictions, PD-scores and TM-scores, with respect to native structures, are highly correlated (0.95), and show that around a fifth of the predictions have a quality as low as 99.5% of the random scores. Using the Gold Standard benchmark, ProtDeform has lower probabilities of error than TM-align both at a similar speed. The analysis is extended to homology discrimination showing that, again, ProtDeform offers higher hit probabilities than TM-align. Finally, we suggest using three different P-values according to the three different contexts: Gapless alignments, optimised alignments for fold discrimination and that for superfamily discrimination. In conclusion, PD-scores are at the very least as valuable for prediction scoring as TM-scores, and on the protein classification problem, even more reliable.


Subject(s)
Proteins/chemistry , Proteins/classification , Algorithms , Databases, Protein , Sequence Analysis, Protein , Software
SELECTION OF CITATIONS
SEARCH DETAIL