Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Small ; : e2311402, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757547

ABSTRACT

The native extracellular matrix (ECM) undergoes constant remodeling, where adhesive ligand presentation changes over time and in space to control stem cell function. As such, it is of interest to develop 2D biointerfaces able to study these complex ligand stem-cell interactions. In this study, a novel dynamic bio interface based on DNA hybridization is developed, which can be employed to control ligand display kinetics and used to study dynamic cell-ligand interaction. In this approach, mesoporous silica nanoparticles (MSN) are functionalized with single-strand DNA (MSN-ssDNA) and spin-coated on a glass substrate to create the 2D bio interface. Cell adhesive tripeptide RGD is conjugated to complementary DNA strands (csDNA) of 9, 11, or 20 nucleotides in length, to form csDNA-RGD. The resulting 3 csDNA-RGD conjugates can hybridize with the ssDNA on the MSN surface, presenting RGD with increased ligand dissociation rates as DNA length is shortened. Slow RGD dissociation rates led to enhanced stem cell adhesion and spreading, resulting in elongated cell morphology. Cells on surfaces with slow RGD dissociation rates also exhibited higher motility, migrating in multiple directions compared to cells on surfaces with fast RGD dissociation rates. This study contributes to the existing body of knowledge on dynamic ligand-stem cell interactions.

2.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675670

ABSTRACT

Single-chain polymeric nanoparticles (SCPNs) have been extensively explored as a synthetic alternative to enzymes for catalytic applications. However, the inherent structural heterogeneity of SCPNs, arising from the dispersity of the polymer backbone and stochastic incorporation of different monomers as well as catalytic moieties, is expected to lead to variations in catalytic activity between individual particles. To understand the effect of structural heterogeneities on the catalytic performance of SCPNs, techniques are required that permit researchers to directly monitor SCPN activity at the single-polymer level. In this study, we introduce the use of single-molecule fluorescence microscopy to study the kinetics of Cu(I)-containing SCPNs towards depropargylation reactions. We developed Cu(I)-containing SCPNs that exhibit fast kinetics towards depropargylation and Cu-catalyzed azide-alkyne click reactions, making them suitable for single-particle kinetic studies. SCPNs were then immobilized on the surface of glass coverslips and the catalytic reactions were monitored at a single-particle level using total internal reflection fluorescence (TIRF) microscopy. Our studies revealed the interparticle turnover dispersity for Cu(I)-catalyzed depropargylations. In the future, our approach can be extended to different polymer designs which can give insights into the intrinsic heterogeneity of SCPN catalysis and can further aid in the rational development of SCPN-based catalysts.

3.
Int J Cancer ; 152(10): 2153-2165, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36705298

ABSTRACT

Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Extracellular Vesicles/pathology , Neoplastic Stem Cells/metabolism , Lung/pathology , Tumor Microenvironment
4.
PLoS Pathog ; 17(4): e1009455, 2021 04.
Article in English | MEDLINE | ID: mdl-33798247

ABSTRACT

Infection with Plasmodium falciparum enhances extracellular vesicle (EV) production in parasitized red blood cells (pRBCs), an important mechanism for parasite-to-parasite communication during the asexual intraerythrocytic life cycle. The endosomal sorting complex required for transport (ESCRT), and in particular the ESCRT-III sub-complex, participates in the formation of EVs in higher eukaryotes. However, RBCs have lost the majority of their organelles through the maturation process, including an important reduction in their vesicular network. Therefore, the mechanism of EV production in P. falciparum-infected RBCs remains to be elucidated. Here we demonstrate that P. falciparum possesses a functional ESCRT-III machinery activated by an alternative recruitment pathway involving the action of PfBro1 and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and membrane shedding, both reported mechanisms of EV production, were reconstituted in the membrane model of giant unilamellar vesicles using the purified recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in EVs purified from a pRBC culture was confirmed by super-resolution microscopy and dot blot assays. Finally, disruption of the PfVps60 gene led to a reduction in the number of the produced EVs in the KO strain and affected the distribution of other ESCRT-III components. Overall, our results increase the knowledge on the underlying molecular mechanisms during malaria pathogenesis and demonstrate that ESCRT-III P. falciparum proteins participate in EV production.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Extracellular Vesicles/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Plasmodium falciparum/pathogenicity , Protein Domains , Protein Transport
5.
Nat Chem Biol ; 17(12): 1281-1288, 2021 12.
Article in English | MEDLINE | ID: mdl-34764473

ABSTRACT

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.


Subject(s)
Lectins/chemistry , Polysaccharides/chemistry , Single Molecule Imaging/methods , Small Molecule Libraries/chemistry , Animals , CHO Cells , Cell Membrane , Cell Membrane Permeability , Cricetulus , Kinetics , Ligands , Multivariate Analysis , Protein Binding , Structure-Activity Relationship
6.
Nature ; 552(7684): 219-224, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29211717

ABSTRACT

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Subject(s)
Cell Membrane/metabolism , Extracellular Matrix/metabolism , Focal Adhesions , Integrins/metabolism , Ligands , Models, Biological , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Membrane/chemistry , Extracellular Matrix/chemistry , Gene Expression Regulation , Humans , Mice , Myosins/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Pliability , Transcription Factors/metabolism , Transcription, Genetic , YAP-Signaling Proteins
7.
Nano Lett ; 22(21): 8618-8625, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36269936

ABSTRACT

Single-molecule localization microscopy (SMLM) is a powerful super-resolution technique for elucidating structure and dynamics in the life- and material sciences. Simultaneously acquiring spectral information (spectrally resolved SMLM, sSMLM) has been hampered by several challenges: an increased complexity of the optical detection pathway, lower accessible emitter densities, and compromised spatio-spectral resolution. Here we present a single-component, low-cost implementation of sSMLM that addresses these challenges. Using a low-dispersion transmission grating positioned close to the image plane, the +1stdiffraction order is minimally elongated and is analyzed using existing single-molecule localization algorithms. The distance between the 0th and 1st order provides accurate information on the spectral properties of individual emitters. This method enables a 5-fold higher emitter density while discriminating between fluorophores whose peak emissions are less than 15 nm apart. Our approach can find widespread use in single-molecule applications that rely on distinguishing spectrally different fluorophores under low photon conditions.


Subject(s)
Microscopy , Single Molecule Imaging , Microscopy/methods , Single Molecule Imaging/methods , Fluorescent Dyes/chemistry , Algorithms , Nanotechnology
8.
Angew Chem Int Ed Engl ; 62(35): e202303390, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37158582

ABSTRACT

The exploitation of low-affinity molecular interactions in protein labeling is an emerging topic in optical microscopy. Such non-covalent and low-affinity interactions can be realized with various concepts from chemistry and for different molecule classes, and lead to a constant renewal of fluorescence signals at target sites. Further benefits are a versatile use across microscopy methods, in 3D, live and many-target applications. In recent years, several classes of low-affinity labels were developed and a variety of powerful applications demonstrated. Still, this research field is underdeveloped, while the potential is huge.

9.
J Am Chem Soc ; 144(51): 23698-23707, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36516974

ABSTRACT

Folding a polymer chain into a well-defined single-chain polymeric nanoparticle (SCPN) is a fascinating approach to obtaining structured and functional nanoparticles. Like all polymeric materials, SCPNs are heterogeneous in their nature due to the polydispersity of their synthesis: the stochastic synthesis of polymer backbone length and stochastic functionalization with hydrophobic and hydrophilic pendant groups make structural diversity inevitable. Therefore, in a single batch of SCPNs, nanoparticles with different physicochemical properties are present, posing a great challenge to their characterization at a single-particle level. The development of techniques that can elucidate differences between SCPNs at a single-particle level is imperative to capture their potential applications in different fields such as catalysis and drug delivery. Here, a Nile Red based spectral point accumulation for imaging in nanoscale topography (NR-sPAINT) super-resolution fluorescence technique was implemented for the study of SCPNs at a single-particle level. This innovative method allowed us to (i) map the small-molecule binding rates on individual SCPNs and (ii) map the polarity of individual SCPNs for the first time. The SCPN designs used here have the same polymeric backbone but differ in the number of hydrophobic groups. The experimental results show notable interparticle differences in the binding rates within the same polymer design. Moreover, a marked polarity shift between the different designs is observed. Interestingly, interparticle polarity heterogeneity was unveiled, as well as an intraparticle diversity, information which has thus far remained hidden by ensemble techniques. The results indicate that the addition of hydrophobic pendant groups is vital to determine binding properties and induces single-particle polarity diversity. Overall, NR-sPAINT represents a powerful approach to quantifying the single-particle polarity of SCPNs and paves the way to relate the structural heterogeneity to functionality at the single-particle level. This provides an important step toward the aim of rationally designing SCPNs for the desired application.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , Nanoparticles/chemistry , Catalysis , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions
10.
J Am Chem Soc ; 144(46): 21196-21205, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36368016

ABSTRACT

Supramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures. Dilution and proteins in blood can have a direct impact on self-assembly, destabilizing the supramolecules and leading to a premature and uncontrolled cargo release. To rationalize this behavior, we designed three monomers exhibiting distinct hydrophobic cores that self-assemble into photo-responsive fibers. We estimated their stability-responsiveness trade-off in vitro, finding two well-separated regimes. These are low-robustness regime, in which the system equilibrates quickly and responds readily to stimuli, and high-robustness regime, in which the system equilibrates slowly and is quite insensitive to stimuli. We probed the performance of both regimes in a complex environment using Förster resonance energy transfer (FRET). Interestingly, the stability-responsiveness trade-off defines perfectly the extent of disassembly caused by dilution but not the one caused by protein interaction. This identifies a disconnection between intrinsic supramolecular robustness and supramolecular stability in the biological environment, strongly influenced by the disassembly pathway upon protein interaction. These findings shed light on the key features to address for supramolecular stability in the biological environment.


Subject(s)
Benzamides , Benzene , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry
11.
Small ; 18(3): e2101959, 2022 01.
Article in English | MEDLINE | ID: mdl-34786859

ABSTRACT

MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.


Subject(s)
MicroRNAs , Nanoparticles , Neoplasms , Humans , Hydrogen-Ion Concentration , MicroRNAs/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy
12.
Biomacromolecules ; 23(1): 326-338, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34904821

ABSTRACT

The controlled folding of synthetic polymer chains into single-chain polymeric nanoparticles (SCPNs) of defined size and shape in water is a viable way to create compartmentalized, nanometer-sized structures for a range of biological applications. Understanding the relationship between the polymer's microstructure and the stability of folded structures is crucial to achieving desired applications. Here, we introduce the solvatochromic dye Nile red into SCPNs and apply a combination of spectroscopic and microscopic techniques to relate polymer microstructure to nanoparticle stability in complex biological media and cellular environments. Our experimental data show that the polymer's microstructure has little effect on the stability of SCPNs in biological media and cytoplasm of living cells, but only SCPNs comprising supramolecular benzene-1,3,5-tricarboxamide (BTA) motifs showed good stability in lysosomes. The results indicate that the polymer's microstructure is vital to ensure nanoparticle stability in highly competitive environments: both hydrophobic collapse and a structured interior are required. Our study provides an accessible way of probing the stability of SCPNs in cellular environments and paves the way for designing highly stable SCPNs for efficient bio-orthogonal catalysis and sensing applications.


Subject(s)
Nanoparticles , Polymers , Catalysis , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Polymers/chemistry , Water/chemistry
13.
Nano Lett ; 21(22): 9509-9516, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34757759

ABSTRACT

Super-resolution microscopy via PAINT has been widely adopted in life sciences to interrogate the nanoscale architecture of many cellular structures. However, obtaining quantitative information in fixed cellular samples remains challenging because control of labeling stoichiometry is hampered in current approaches due to click-chemistry and additional targeting probes. To overcome these challenges, we have identified a small, PDZ-based, peptide-protein interaction pair that is genetically encodable and compatible with super-resolution imaging upon cellular fixation without additional labeling. Stoichiometric labeling control by genetic incorporation of this probe into the cellular vimentin network and mitochondria resulted in super-resolved 3D reconstructions with high specificity and spatial resolution. Further characterization reveals that this peptide-protein interaction is compatible with quantitative PAINT and that its binding kinetics remains unaltered upon fixation. Finally, by fusion of our probe to nanobodies against conventional expression markers, we show that this approach provides a versatile addition to the super-resolution toolbox.


Subject(s)
DNA , Single-Domain Antibodies , Click Chemistry , DNA/chemistry , Microscopy, Fluorescence/methods , Peptides/genetics
14.
Nano Lett ; 21(12): 5360-5368, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34125548

ABSTRACT

The functionalization of nanoparticles with functional moieties is a key strategy to achieve cell targeting in nanomedicine. The interplay between size and ligand number is crucial for the formulation performance and needs to be properly characterized to understand nanoparticle structure-activity relations. However, there is a lack of methods able to measure both size and ligand number at the same time and at the single particle level. Here, we address this issue by introducing a correlative light and electron microscopy (CLEM) method combining super-resolution microscopy (SRM) and transmission electron microscopy (TEM) imaging. We apply our super-resCLEM method to characterize the relationship between size and ligand number and density in PLGA-PEG nanoparticles. We highlight how heterogeneity found in size can impact ligand distribution and how a significant part of the nanoparticle population goes completely undetected in the single-technique analysis. Super-resCLEM holds great promise for the multiparametric analysis of other parameters and nanomaterials.


Subject(s)
Nanoparticles , Ligands , Microscopy, Electron, Transmission , Microscopy, Fluorescence
15.
J Am Chem Soc ; 143(27): 10131-10142, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34180666

ABSTRACT

Synthesis of ligand-functionalized nanomaterials with control over size, shape, and ligand orientation facilitates the design of targeted nanomedicines for therapeutic purposes. DNA nanotechnology has emerged as a powerful tool to rationally construct two- and three-dimensional nanostructures, enabling site-specific incorporation of protein ligands with control over stoichiometry and orientation. To efficiently target cell surface receptors, exploration of the parameters that modulate cellular accessibility of these nanostructures is essential. In this study, we systematically investigate tunable design parameters of antibody-functionalized DNA nanostructures binding to therapeutically relevant receptors, including the programmed cell death protein 1, the epidermal growth factor receptor, and the human epidermal growth factor receptor 2. We show that, although the native affinity of antibody-functionalized DNA nanostructures remains unaltered, the absolute number of bound surface receptors is lower compared to soluble antibodies due to receptor accessibility by the nanostructure. We explore structural determinants of this phenomenon to improve efficiency, revealing that receptor binding is mainly governed by nanostructure size and DNA handle location. The obtained results provide key insights in the ability of ligand-functionalized DNA nanostructures to bind surface receptors and yields design rules for optimal cellular targeting.


Subject(s)
Cell Communication , DNA/chemistry , DNA/metabolism , Nanostructures , Animals , CHO Cells , Cricetulus , Drug Delivery Systems , Humans , Immune Checkpoint Proteins , Ligands , Nanotubes , Protein Binding
16.
Chemistry ; 27(43): 11056-11060, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34096656

ABSTRACT

An amine functionalized C3 -symmetric benzotrithiophene (BTT) monomer has been designed and synthetized in order to form pH responsive one-dimensional supramolecular polymers in aqueous media. While most of the reported studies looked at the effect of pH on the size of the aggregates, herein, a detailed mechanistic study is reported, carried out upon modifying the pH to trigger the formation of positively charged ammonium groups. A dramatic and reversible change in the polymerization mechanism and size of the supramolecular fibers is observed and ascribed to the combination of Coulombic repulsive forces and higher monomer solubility. Furthermore, the induced frustrated growth of the fibers is further employed to finely control the one-dimensional supramolecular polymerisation and copolymerization processes.


Subject(s)
Polymers , Water , Hydrogen-Ion Concentration , Macromolecular Substances , Polymerization
17.
Biomacromolecules ; 22(3): 1197-1210, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33512161

ABSTRACT

Enzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles. In this work, we report a systematic head-to-head comparison of well-defined polymeric micelles with different polymeric shells and two types of enzymatically degradable hydrophobic cores. To carry out this direct comparison, we developed a highly modular approach for preparing clickable, spectrally active enzyme-responsive dendrons with adjustable degree of hydrophobicity. The dendrons were linked with three different widely used hydrophilic polymers-poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the CuAAC click reaction. The high modularity and molecular precision of the synthetic methodology enabled us to easily prepare well-defined amphiphiles that differ either in their hydrophilic block composition or in their hydrophobic dendron. The micelles of the different amphiphiles were thoroughly characterized and their sizes, critical micelle concentrations, drug loading, stability, and cell internalization were compared. We found that the micelle diameter was almost solely dependent on the hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic degradation rate was strongly dependent on the composition of both blocks. Drug encapsulation capacity was very sensitive to the type of the hydrophilic block, indicating that, in addition to the hydrophobic core, the micellar shell also has a significant role in drug encapsulation. Incubation of the spectrally active micelles in the presence of cells showed that the hydrophilic shell significantly affects the micellar stability, localization, cell internalization kinetics, and the cargo release mechanism. Overall, the high molecular precision and the ability of these amphiphiles to report their disassembly, even in complex biological media, allowed us to directly compare the different types of micelles, providing striking insights into how the composition of the micelle shells and cores can affect their properties and potential to serve as nanocarriers.


Subject(s)
Micelles , Polymers , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols
18.
Nano Lett ; 20(5): 3633-3641, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32208704

ABSTRACT

Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.


Subject(s)
Axons , Endosomes , Graphite , Nerve Growth Factor/physiology , Animals , Cells, Cultured , Mice , Nerve Regeneration
19.
J Am Chem Soc ; 142(22): 10069-10078, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32395995

ABSTRACT

One of the most appealing features of supramolecular assemblies is their ability to respond to external stimuli due to their noncovalent nature. This provides the opportunity to gain control over their size, morphology, and chemical properties and is key toward some of their applications. However, the design of supramolecular systems able to respond to multiple stimuli in a controlled fashion is still challenging. Here we report the synthesis and characterization of a novel discotic molecule, which self-assembles in water into a single-component supramolecular polymer that responds to multiple independent stimuli. The building block of such an assembly is a C3-symmetric monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated to a series of natural and non-natural functional amino acids. This design allows the use of rapid and efficient solid-phase synthesis methods and the modular implementation of different functionalities. The discotic monomer incorporates a hydrophobic azobenzene moiety, an octaethylene glycol chain, and a C-terminal lysine. Each of these blocks was chosen for two reasons: to drive the self-assembly in water by a combination of H-bonding and hydrophobicity and to impart specific responsiveness. With a combination of microscopy and spectroscopy techniques, we demonstrate self-assembly in water and responsiveness to temperature, light, pH, and ionic strength. This work shows the potential to integrate independent mechanisms for controlling self-assembly in a single-component supramolecular polymer by the rational monomer design and paves the way toward the use of multiresponsive systems in water.

20.
Nat Mater ; 18(9): 1015-1023, 2019 09.
Article in English | MEDLINE | ID: mdl-31160803

ABSTRACT

Epithelial repair and regeneration are driven by collective cell migration and division. Both cellular functions involve tightly controlled mechanical events, but how physical forces regulate cell division in migrating epithelia is largely unknown. Here we show that cells dividing in the migrating zebrafish epicardium exert large cell-extracellular matrix (ECM) forces during cytokinesis. These forces point towards the division axis and are exerted through focal adhesions that connect the cytokinetic ring to the underlying ECM. When subjected to high loading rates, these cytokinetic focal adhesions prevent closure of the contractile ring, leading to multi-nucleation through cytokinetic failure. By combining a clutch model with experiments on substrates of different rigidity, ECM composition and ligand density, we show that failed cytokinesis is triggered by adhesion reinforcement downstream of increased myosin density. The mechanical interaction between the cytokinetic ring and the ECM thus provides a mechanism for the regulation of cell division and polyploidy that may have implications in regeneration and cancer.


Subject(s)
Cell Division , Cytokinesis , Pericardium/cytology , Polyploidy , Zebrafish , Animals , Extracellular Matrix
SELECTION OF CITATIONS
SEARCH DETAIL