Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Biotechnol Bioeng ; 120(9): 2479-2493, 2023 09.
Article in English | MEDLINE | ID: mdl-37272445

ABSTRACT

Metabolic modeling has emerged as a key tool for the characterization of biopharmaceutical cell culture processes. Metabolic models have also been instrumental in identifying genetic engineering targets and developing feeding strategies that optimize the growth and productivity of Chinese hamster ovary (CHO) cells. Despite their success, metabolic models of CHO cells still present considerable challenges. Genome-scale metabolic models (GeMs) of CHO cells are very large (>6000 reactions) and are difficult to constrain to yield physiologically consistent flux distributions. The large scale of GeMs also makes the interpretation of their outputs difficult. To address these challenges, we have developed CHOmpact, a reduced metabolic network that encompasses 101 metabolites linked through 144 reactions. Our compact reaction network allows us to deploy robust, nonlinear optimization and ensure that the computed flux distributions are physiologically consistent. Furthermore, our CHOmpact model delivers enhanced interpretability of simulation results and has allowed us to identify the mechanisms governing shifts in the anaplerotic consumption of asparagine and glutamate as well as an important mechanism of ammonia detoxification within mitochondria. CHOmpact, thus, addresses key challenges of large-scale metabolic models and will serve as a platform to develop dynamic metabolic models for the control and optimization of biopharmaceutical cell culture processes.


Subject(s)
Genome , Metabolic Networks and Pathways , Cricetinae , Animals , Cricetulus , CHO Cells , Computer Simulation
2.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163072

ABSTRACT

The TIR-containing protein C (TcpC) of the uropathogenic Escherichia coli strain CFT073 modulates innate immunity by interfering with the Toll-like receptor and NALP3 inflammasome signaling cascade. During a urinary tract infection the pathogen encounters epithelial and innate immune cells and replicates by several orders of magnitude. We therefore analyzed whether these cell types and also the density of the pathogen would induce the recently defined promoter of the CFT073 tcpC gene to, in time, dampen innate immune responses. Using reporter constructs we found that the uroepithelial cell line T24/83 and the monocytic cell line THP-1 induced the tcpC promoter. Differentiation of monocytic THP-1 cells to macrophages increased their potential to switch on the promoter. Cell-associated CFT073 displayed the highest promoter activity. Since potassium represents the most abundant intracellular ion and is secreted to induce the NLRP3 inflammasome, we tested its ability to activate the tcpC promoter. Potassium induced the promoter with high efficiency. Sodium, which is enriched in the renal cortex generating an antibacterial hypersalinity, also induced the tcpC promoter. Finally, the bacterial density modulated the tcpC promoter activity. In the search for promoter-regulating proteins, we found that the DNA-binding protein H-NS dampens the promoter activity. Taken together, different cell types and salts, present in the kidney, are able to induce the tcpC promoter and might explain the mechanism of TcpC induction during a kidney infection with uropathogenic E. coli strains.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation, Bacterial , Humans , Inflammasomes/metabolism , Models, Biological , Potassium/pharmacology , Promoter Regions, Genetic/drug effects , Signal Transduction , Sodium/pharmacology , THP-1 Cells , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli/genetics , Virulence Factors/metabolism
3.
Biotechnol Bioeng ; 115(6): 1509-1520, 2018 06.
Article in English | MEDLINE | ID: mdl-29427454

ABSTRACT

Cell viability has a critical impact on product quantity and quality during the biomanufacturing of therapeutic proteins. An advanced understanding of changes in the cellular and conditioned media proteomes upon cell stress and death is therefore needed for improved bioprocess control. Here, a high pH/low pH reversed phase data independent 2D-LC-MSE discovery proteomics platform was applied to study the cellular and conditioned media proteomes of CHO-K1 apoptosis and necrosis models where cell death was induced by staurosporine exposure or aeration shear in a benchtop bioreactor, respectively. Functional classification of gene ontology terms related to molecular functions, biological processes, and cellular components revealed both cell death independent and specific features. In addition, label free quantitation using the Hi3 approach resulted in a comprehensive shortlist of 23 potential cell viability marker proteins with highest abundance and a significant increase in the conditioned media upon induction of cell death, including proteins related to cellular stress response, signal mediation, cytoskeletal organization, cell differentiation, cell interaction as well as metabolic and proteolytic enzymes which are interesting candidates for translating into targeted analysis platforms for monitoring bioprocessing response and increasing process control.


Subject(s)
Apoptosis , CHO Cells/chemistry , CHO Cells/physiology , Necrosis , Proteome/analysis , Animals , Chromatography, Liquid , Cricetulus , Culture Media, Conditioned , Mass Spectrometry , Proteomics
4.
Anal Bioanal Chem ; 410(13): 3197-3207, 2018 May.
Article in English | MEDLINE | ID: mdl-29607450

ABSTRACT

The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MSE was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 106 dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.


Subject(s)
Cell Death , Chromatography, Liquid/methods , Proteomics/methods , Tandem Mass Spectrometry/methods , Animals , Batch Cell Culture Techniques , Biomarkers/analysis , Bioreactors , CHO Cells , Cell Proliferation , Cell Survival , Cricetulus , Proteome/analysis
5.
Biotechnol Lett ; 40(1): 5-21, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28940015

ABSTRACT

Raw materials, in particular cell culture media, represent a significant source of variability to biopharmaceutical manufacturing processes that can detrimentally affect cellular growth, viability and specific productivity or alter the quality profile of the expressed therapeutic protein. The continual expansion of the biopharmaceutical industry is creating an increasing demand on the production and supply chain consistency for cell culture media, especially as companies embrace intensive continuous processing. Here, we provide a historical perspective regarding the transition from serum containing to serum-free media, the development of chemically-defined cell culture media for biopharmaceutical production using industrial scale bioprocesses and review production mechanisms for liquid and powder culture media. An overview and critique of analytical approaches used for the characterisation of cell culture media and the identification of root causes of variability are also provided, including in-depth liquid phase separations, mass spectrometry and spectroscopic methods.


Subject(s)
Cell Culture Techniques/standards , Culture Media/standards , Technology, Pharmaceutical/standards , Cell Culture Techniques/methods , Culture Media/chemistry , Technology, Pharmaceutical/methods
6.
Proteomics ; 17(1-2)2017 01.
Article in English | MEDLINE | ID: mdl-27891772

ABSTRACT

Quantitative glycomics represents an actively expanding research field ranging from the discovery of disease-associated glycan alterations to the quantitative characterization of N-glycans on therapeutic proteins. Commonly used analytical platforms for comparative relative quantitation of complex glycan samples include MALDI-TOF-MS or chromatographic glycan profiling with subsequent data alignment and statistical evaluation. Limitations of such approaches include run-to-run technical variation and the potential introduction of subjectivity during data processing. Here, we introduce an offline 2D LC-MSE workflow for the fractionation and relative quantitation of twoplex isotopically labeled N-linked oligosaccharides using neutral 12 C6 and 13 C6 aniline (Δmass = 6 Da). Additional linkage-specific derivatization of sialic acids using 4-(4,6-dimethoxy-1,3,5-trizain-2-yl)-4-methylmorpholinium chloride offered simultaneous and advanced in-depth structural characterization. The potential of the method was demonstrated for the differential analysis of structurally defined N-glycans released from serum proteins of patients diagnosed with various stages of colorectal cancer. The described twoplex 12 C6 /13 C6 aniline 2D LC-MS platform is ideally suited for differential glycomic analysis of structurally complex N-glycan pools due to combination and analysis of samples in a single LC-MS injection and the associated minimization in technical variation.


Subject(s)
Chromatography, Liquid/methods , Glycomics/methods , Mass Spectrometry/methods , N-Acetylneuraminic Acid/chemistry , Proteomics/methods , Aniline Compounds/chemistry , Humans , Isotope Labeling
7.
Anal Chem ; 89(18): 9953-9960, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28823148

ABSTRACT

An untargeted LC-MS/MS platform was implemented for monitoring variations in CHO cell culture media upon exposure to high temperature short time (HTST) treatment, a commonly used viral clearance upstream strategy. Chemically defined (CD) and hydrolysate-supplemented media formulations were not visibly altered by the treatment. The absence of solute precipitation effects during media treatment and very modest shifts in pH values observed indicated sufficient compatibility of the formulations evaluated with the HTST-processing conditions. Unsupervised chemometric analysis of LC-MS/MS data, however, revealed clear separation of HTST-treated samples from untreated counterparts as observed from analysis of principal components and hierarchical clustering sample grouping. An increased presence of Maillard products in HTST-treated formulations contributed to the observed differences which included organic acids, observed particularly in chemically defined formulations, and furans, pyridines, pyrazines, and pyrrolidines which were determined in hydrolysate-supplemented formulations. The presence of Maillard products in media did not affect cell culture performance with similar growth and viability profiles observed for CHO-K1 and CHO-DP12 cells when cultured using both HTST-treated and untreated media formulations.


Subject(s)
Culture Media/analysis , Hot Temperature , Animals , CHO Cells , Cells, Cultured , Chromatography, Liquid , Cricetulus , Tandem Mass Spectrometry , Time Factors
8.
J Proteome Res ; 15(9): 3255-65, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27428249

ABSTRACT

The dromedary camel (Camelus dromedarius) is an agriculturally important species of high economic value but of low reproductive efficiency. Serum and IgG N-glycosylation are affected by physiological and pathogenic changes and might therefore be a useful diagnostic tool in camel livestock management. This study presents the first comprehensive annotation of the N-glycome from dromedary camel serum as well as their single-domain and conventional antibodies and its subsequent application for camel pregnancy diagnostics. N-glycans were released by PNGaseF, labeled with 2-aminobenzamide (2-AB), and analyzed by hydrophilic interaction liquid chromatography with fluorescent detection (HILIC-UPLC-FLD), enzymatic sequencing and mass spectrometry (MS). The use of a high-throughput robotic platform for sample preparation allowed the rapid generation of glycomics data from pregnant (n = 8) and nonpregnant (n = 8) camels of the Majaheem and Wadha breed. IgG N-glycans dominate the glycan profile of camel serum and present a mixture of core-fucosylated and noncore-fucosylated N-glycans which can contain N-glycolylneuraminic and N-acetylneuraminic acid. Significant pregnancy-associated but breed-independent increases in galactosylation, core-fucosylation, sialylation, and decreases in serum O-acetylation were observed. The monitoring of IgG and serum N-glycosylation presents an attractive complementary test for camel pregnancy diagnostics and presents an interesting tool for biomarker discovery in camel health and breeding.


Subject(s)
Glycomics/methods , Immunoglobulin G/metabolism , Polysaccharides/analysis , Serum/metabolism , Animals , Biomarkers/analysis , Camelus , Chromatography, Liquid , Diagnosis , Female , Glycosylation , Mass Spectrometry , Polysaccharides/metabolism , Pregnancy
9.
Anal Chem ; 88(9): 4795-802, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27033327

ABSTRACT

The biological function of glycosphingolipids (GSLs) is largely determined by their glycan headgroup moiety. This has placed a renewed emphasis on detailed GSL headgroup structural analysis. Comprehensive profiling of GSL headgroups in biological samples requires the use of endoglycoceramidases with broad substrate specificity and a robust workflow that enables their high-throughput analysis. We present here the first high-throughput glyco-analytical platform for GSL headgroup profiling. The workflow features enzymatic release of GSL glycans with a novel broad-specificity endoglycoceramidase I (EGCase I) from Rhodococcus triatomea, selective glycan capture on hydrazide beads on a robotics platform, 2AB-fluorescent glycan labeling, and analysis by UPLC-HILIC-FLD. R. triatomea EGCase I displayed a wider specificity than known EGCases and was able to efficiently hydrolyze gangliosides, globosides, (n)Lc-type GSLs, and cerebrosides. Our workflow was validated on purified GSL standard lipids and was applied to the characterization of GSLs extracted from several mammalian cell lines and human serum. This study should facilitate the analytical workflow in functional glycomics studies and biomarker discovery.


Subject(s)
Glycoside Hydrolases/metabolism , Glycosphingolipids/analysis , High-Throughput Screening Assays , Polysaccharides/analysis , Animals , Cells, Cultured , Chromatography, High Pressure Liquid , Glycosphingolipids/metabolism , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Polysaccharides/metabolism , Rhodococcus/enzymology , Substrate Specificity
10.
Eur J Nutr ; 54(1): 119-28, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24700375

ABSTRACT

PURPOSE: To investigate whether breast-milk composition and microbiota differ in healthy mothers and mothers with celiac disease (CD) to ultimately contribute to identify additional factors determining CD risk. METHODS: Breast-milk samples from healthy mothers (n = 12) and mothers with CD (n = 12) were collected. Cytokines and secretory immunoglobulin A (sIgA) were analyzed by bead-arrays and flow cytometry and human milk oligosaccharides (HMOs) were assessed by capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection. Breast-milk microbiota composition was analyzed by conventional and quantitative real-time PCR. RESULT: Breast milk from CD mothers showed significantly lower levels of interleukin (IL) 12p70 (P < 0.042), transforming growth factor (TGF)-ß1 (P < 0.018) and sIgA (P < 0.003) and almost significantly lower levels of interferon (IFN)-γ (P < 0.058). Six mothers in each group belonged to the secretor Le(a-b+) type, one to the secretor Le(a-b-) type and five to the non-secretor Le(a+b-) type. CD mothers of non-secretor Le(a+b-) type showed increased Lacto-N-tetraose content (P < 0.042) compared with healthy mothers. CD mothers' milk showed reduced gene copy numbers of Bifidobacterium spp. (P < 0.026) and B. fragilis group (P < 0.044). CONCLUSION: CD mothers' breast milk is characterized by a reduced abundance of immunoprotective compounds (TGF-ß1 and sIgA) and bifidobacteria. The reduction in these components could theoretically diminish the protective effects of breast-feeding on the child's future risk of developing CD.


Subject(s)
Bacteroides fragilis/isolation & purification , Bifidobacterium/isolation & purification , Celiac Disease/metabolism , Cytokines/analysis , Immunoglobulin A, Secretory/analysis , Milk, Human/chemistry , Oligosaccharides/analysis , Adult , Bacteroides fragilis/classification , Bacteroides fragilis/genetics , Bacteroides fragilis/growth & development , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/growth & development , Case-Control Studies , Celiac Disease/diet therapy , Celiac Disease/immunology , Celiac Disease/microbiology , Cytokines/metabolism , Diet, Gluten-Free , Family Health , Female , Gene Dosage , Genes, Bacterial , Humans , Immunoglobulin A, Secretory/metabolism , Interferon-gamma/analysis , Interferon-gamma/metabolism , Interleukin-12/analysis , Interleukin-12/metabolism , Lewis Blood Group Antigens/metabolism , Maternal Nutritional Physiological Phenomena , Milk, Human/microbiology , Molecular Typing , Oligosaccharides/metabolism , Transforming Growth Factor beta1/analysis , Transforming Growth Factor beta1/metabolism
11.
Br J Nutr ; 111(7): 1313-28, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24635885

ABSTRACT

The present study was conducted to obtain a comprehensive overview of oligosaccharides present in the milk of a variety of important domestic animals including cows, goats, sheep, pigs, horses and dromedary camels. Using an analytical workflow that included ultra-performance liquid chromatography-hydrophilic interaction liquid chromatography with fluorescence detection coupled to quadrupole time-of-flight MS, detailed oligosaccharide libraries were established. The partial or full characterisation of the neutral/fucosylated, phosphorylated and sialylated structures was facilitated by sequencing with linkage- and sugar-specific exoglycosidases. Relative peak quantification of the 2-aminobenzamide-labelled oligosaccharides provided additional information. Milk from domestic animals contained a much larger variety of complex oligosaccharides than was previously assumed, and thirteen of these structures have been identified previously in human milk. The direct comparison of the oligosaccharide mixtures reflects their role in the postnatal maturation of different types of gastrointestinal systems, which, in this way, are prepared for certain post-weaning diets. The potential value of animal milk for the commercial extraction of oligosaccharides to be used in human and animal health is highlighted.


Subject(s)
Colostrum/chemistry , Milk/chemistry , Oligosaccharides/analysis , Alkaline Phosphatase/metabolism , Animals , Animals, Inbred Strains , Bacterial Proteins/metabolism , Camelus , Cattle , Female , Glycoside Hydrolases/metabolism , Goats , Horses , Ireland , Molecular Structure , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Phosphorylation , Saudi Arabia , Sheep, Domestic , Sus scrofa , Tandem Mass Spectrometry
12.
Glycoconj J ; 30(8): 791-800, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23793847

ABSTRACT

Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed. Artificial substrates do not always identify every glycosidase activity present in an extract. To overcome this, an HPLC-based protocol for glycosidase identification from microbial culture was developed using natural O-glycans and O-glycosylated glycoproteins (porcine stomach mucin and fetuin) as substrates. O-glycans were released by ammonia-based ß-elimination for use as substrates, and the bacterial culture supernatants were subjected to ultrafiltration to separate the proteins from glycans and low molecular size molecules. Two bacterial cultures, the psychrotroph Arthrobacter C1-1 and a Corynebacterium isolate, were examined as potential sources of novel glycosidases. Arthrobacter C1-1 culture contained a ß-galactosidase and N-acetyl-ß-glucosaminidase when assayed using 4-methylumbelliferyl substrates, but when defucosylated O-glycans from porcine stomach mucin were used as substrate, the extract did not cleave ß-linked galactose or N-acetylglucosamine. Sialidase activity was identified in Corynebacterium culture supernatant, which hydrolysed sialic acid from fetuin glycans. When both culture supernatants were assayed using the glycoproteins as substrate, neither contained endoglycosidase activity. This method may be applied to investigate a microbial or other extract for glycosidase activity, and has potential for scale-up on high-throughput platforms.


Subject(s)
Arthrobacter/enzymology , Bacterial Proteins/chemistry , Corynebacterium/enzymology , Glycoproteins/chemistry , Glycoside Hydrolases/chemistry , Polysaccharides/chemistry , Animals , Chromatography, High Pressure Liquid , Substrate Specificity , Swine
13.
Pathogens ; 10(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062817

ABSTRACT

The uropathogenic Escherichia coli strain CFT073 causes kidney abscesses in mice Toll/interleukin-1 receptor domain-containing protein C (TcpC) dependently and the corresponding gene is present in around 40% of E. coli isolates of pyelonephritis patients. It impairs the Toll-like receptor (TLR) signaling chain and the NACHT leucin-rich repeat PYD protein 3 inflammasome (NLRP3) by binding to TLR4 and myeloid differentiation factor 88 as well as to NLRP3 and caspase-1, respectively. Overexpression of the tcpC gene stopped replication of CFT073. Overexpression of several tcpC-truncation constructs revealed a transmembrane region, while its TIR domain induced filamentous bacteria. Based on these observations, we hypothesized that tcpC expression is presumably tightly controlled. We tested two putative promoters designated P1 and P2 located at 5' of the gene c2397 and 5' of the tcpC gene (c2398), respectively, which may form an operon. High pH and increasing glucose concentrations stimulated a P2 reporter construct that was considerably stronger than a P1 reporter construct, while increasing FeSO4 concentrations suppressed their activity. Human urine activated P2, demonstrating that tcpC might be induced in the urinary tract of infected patients. We conclude that P2, consisting of a 240 bp region 5' of the tcpC gene, represents the major regulator of tcpC expression.

14.
Electrophoresis ; 31(7): 1264-1273, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20349515

ABSTRACT

Mixtures of the complex human milk oligosaccharides (HMOs) are difficult to analyze and gastrointestinal bioconversion products of HMOs may complicate analysis even more. Their analysis, therefore, requires the combination of a sensitive and high-resolution separation technique with a mass identification tool. This study introduces for the first time the hyphenation of CE with an electrospray mass spectrometer, capable to perform multiple MS analysis (ESI-MS(n)) for the separation and characterization of HMOs in breast milk and feces of breast-fed babies. LIF was used for on- and off-line detections. From the overall 47 peaks detected in off-line CE-LIF electropherograms, 21 peaks could be unambiguously and 11 peaks could be tentatively assigned. The detailed structural characterization of a novel lacto-N-neo-tetraose isomer and a novel lacto-N-fucopentaose isomer was established in baby feces and pointed to gastrointestinal hydrolysis of higher-Mw HMOs. CE-LIF-ESI-MS(n) presents, therefore, a useful tool which contributes to an advanced understanding on the fate of individual HMOs during their gastrointestinal passage.


Subject(s)
Electrophoresis, Capillary/methods , Feces/chemistry , Mass Spectrometry/methods , Milk, Human/chemistry , Oligosaccharides/analysis , Breast Feeding , Female , Humans , Infant, Newborn , Oligosaccharides/chemistry
15.
Circ Genom Precis Med ; 12(4): e002433, 2019 04.
Article in English | MEDLINE | ID: mdl-30844302

ABSTRACT

BACKGROUND: The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients. METHODS: Molecular profiling was conducted using mass spectrometry-based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points. Shotgun proteomics was performed on 9 KD adults with giant CAA and matched healthy controls. Plasma calprotectin was measured by ELISA in 28 pediatric KD patients 1 year post-KD, 70 adult KD patients, and 86 healthy adult volunteers. RESULTS: A characteristic molecular profile was seen in pediatric patients during the acute disease, which resolved at the subacute and convalescent periods in patients with no coronary artery sequelae but persisted in 2 patients who developed giant CAA. We, therefore, investigated persistence of inflammation in KD adults with giant CAA by shotgun proteomics that revealed a signature of active inflammation, immune regulation, and cell trafficking. Correlating results obtained using shotgun proteomics in the pediatric and adult KD cohorts identified elevated calprotectin levels in the plasma of patients with CAA. Investigation of expanded pediatric and adult KD cohorts revealed elevated levels of calprotectin in pediatric patients with giant CAA 1 year post-KD and in adult KD patients who developed giant CAA in childhood. CONCLUSIONS: Complex patterns of biomarkers of inflammation and cell trafficking can persist long after the acute phase of KD in patients with giant CAA. Elevated levels of plasma calprotectin months to decades after acute KD and infiltration of cells expressing S100A8 and A9 in vascular tissues suggest ongoing, subclinical inflammation. Calprotectin may serve as a biomarker to inform the management of KD patients following the acute illness.


Subject(s)
Biomarkers/blood , Coronary Aneurysm/diagnosis , Leukocyte L1 Antigen Complex/blood , Mucocutaneous Lymph Node Syndrome/pathology , Acute Disease , Adult , C-Reactive Protein/analysis , Calgranulin A/metabolism , Calgranulin B/metabolism , Case-Control Studies , Child , Coronary Vessels/metabolism , Humans , Inflammation/etiology , Myocardium/metabolism , Phenotype , Proteomics
16.
Methods Mol Biol ; 1606: 353-366, 2017.
Article in English | MEDLINE | ID: mdl-28502012

ABSTRACT

Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.


Subject(s)
Chromatography, Liquid/methods , Electrophoresis, Capillary/methods , Mass Spectrometry/methods , Polysaccharides/analysis , Polysaccharides/isolation & purification , Aniline Compounds/chemistry , Animals , Humans , Isotope Labeling/methods , Isotopes/chemistry , Polysaccharides/chemistry , ortho-Aminobenzoates/chemistry
17.
Methods Mol Biol ; 1603: 227-241, 2017.
Article in English | MEDLINE | ID: mdl-28493134

ABSTRACT

In the last decades, the number of approved therapeutic proteins drugs is increasing exponentially and a large number of new therapeutic entities are progressing through clinical trials, solidifying biologics as the most promising class of pharmaceuticals on the market. Several cell lines are available for biopharmaceutical processes but mammalian cells are preferred since they give fewer problems for immunogenicity as they produce human-like post-translational modifications (PTMs). Glycosylation is the most common and complex (for both bioprocess engineering and quality control) of these modifications. Obtaining the desired glycosylation pattern is crucial for therapeutic proteins as it can impact significantly stability, half-life and safety as well as driving molecular processes, modifying the way drug interacts with patients' cells. As a consequence, glycosylation (like other PTMs) needs to be regulated and accurately analyzed during biopharmaceutical production. Herein we describe and discuss the analytical approaches for glycosylation analysis of therapeutic glycoproteins produced in CHO (Chinese Hamster Ovary) cells. This chapter will describe glycoprotein purification after separation from producing cell lines, N-glycan release and their variants fine structural characterization through mass spectrometry techniques.


Subject(s)
Biological Products/therapeutic use , Cell Culture Techniques/methods , Mass Spectrometry/methods , Polysaccharides/chemistry , Protein Engineering/methods , Recombinant Proteins/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , Humans , Protein Processing, Post-Translational
18.
Vaccine ; 35(21): 2801-2810, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28413133

ABSTRACT

Chlamydia trachomatis serovars D-K are one of the most frequent causes of sexually transmitted infections of the female genital tract, with possible complications such as hydrosalpinx, pelvic inflammatory disease, extra-uterine gravidity or infertility. We used the murine genital tract infection model with C. muridarum for vaccination studies and found that more than 70% of the infected mice suffered from uterus dilatations and/or hydrosalpinx. Systemic consequences of the vaginal infection were apparent by splenomegaly ten to fifteen days post infection. While cultivable microorganisms were detectable for the first 23days post infection, the first lesions of the genital tract developed at day 15, however, many lesions occurred later in the absence of cultivable bacteria. Lesions were not accompanied by pro-inflammatory cytokines such as IFNÉ£, TNF and IL-6, since these cytokines were almost undetectable in the genital tract 43days post infection. To prevent genital tract lesions, we vaccinated mice with the polymorphic membrane protein (Pmp) A in combination with CpG-ODN 1826 as adjuvant. The vaccine lowered the chlamydial burden and the differences were significant at day 10 post infection but not later. More importantly the vaccine decreased the rate and severity of genital tract lesions. Interestingly, control vaccination with the protein ovalbumin plus CpG-ODN 1826 enhanced significantly the severity but not the rate of pathologic lesions, which was presumably caused by the activation of innate immune responses by the adjuvant in the absence of a C. muridarum-specific adaptive immune response. In summary, vaccination with recombinant PmpA plus CpG-ODN 1826 significantly reduced C. muridarum-induced tissue damage, however, CpG-ODN 1826 may aggravate C. muridarum-induced tissue injuries in the absence of a protective antigen.


Subject(s)
Bacterial Vaccines/immunology , Chlamydia Infections/pathology , Chlamydia Infections/prevention & control , Chlamydia muridarum/immunology , Genital Diseases, Female/pathology , Genital Diseases, Female/prevention & control , Membrane Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Bacterial Proteins/immunology , Bacterial Vaccines/administration & dosage , Chlamydia Infections/microbiology , Disease Models, Animal , Female , Genital Diseases, Female/microbiology , Mice, Inbred C57BL , Oligodeoxyribonucleotides/administration & dosage , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
19.
J Immunol Methods ; 428: 30-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26627984

ABSTRACT

Glycosylation of the IgG-Fc is essential for optimal binding and activation of Fcγ receptors and the C1q component of complement. However, it has been reported that the effector functions are down-regulated when the Fc glycans terminate in sialic acid residues and that sialylated IgG mediates anti-inflammatory effects of intravenous immunoglobulin (IVIG). Although recombinant IgG is hypo-sialylated, Fc sialylation is shown to be markedly increased when a mouse/human chimeric IgG3 Phe243Ala (F243A) variant is expressed in Chinese hamster ovary (CHO)-K1 cells. Here we investigate whether sialylation is increased in IgG1 F243A when expressed in CHO-K1, mouse myeloma J558L and human embryonic kidney (HEK) 293. Although the sialylation level was 2-5% for IgG1 wild type (WT), it was increased to 31%, 10% and 33% for the variant from CHO-K1, J558L and HEK293 cells, respectively. Interestingly, an increased addition of bisecting GlcNAc and α(1-3)-galactose residues to the Fc glycan was observed for HEK293-derived and J558L-derived IgG1 F243A, respectively. Fucosylation of HEK293-derived IgG1 F243A was maintained despite increased bisecting GlcNAc content. Although sialic acid and bisecting GlcNAc residues are reported to have an opposing effect on antibody-dependent cellular cytotoxicity (ADCC), IgG1 F243A showed 7 times lower ADCC activities than IgG1 WT, irrespective of bisecting GlcNAc residue. Thus, highly sialylated, human cell-derived IgG1 F243A with lowered ADCC activity may be of interest for the development of therapeutic antibodies with anti-inflammatory properties as an alternative to IVIG.


Subject(s)
Immunoglobulin G/genetics , Immunoglobulin G/metabolism , N-Acetylneuraminic Acid/metabolism , Animals , CHO Cells , Cell Line, Tumor , Chromatography, High Pressure Liquid , Cricetulus , Glycosylation , HEK293 Cells , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Mice , Mice, Inbred BALB C , N-Acetylneuraminic Acid/analysis
20.
J Clin Invest ; 126(7): 2425-36, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27214553

ABSTRACT

Successful bacterial pathogens produce an array of virulence factors that allow subversion of the immune system and persistence within the host. For example, uropathogenic Escherichia coli strains, such as CFT073, express Toll/IL-1 receptor-containing (TIR-containing) protein C (TcpC), which impairs TLR signaling, thereby suppressing innate immunity in the urinary tract and enhancing persistence in the kidneys. Here, we have reported that TcpC also reduces secretion of IL-1ß by directly interacting with the NACHT leucin-rich repeat PYD protein 3 (NLRP3) inflammasome, which is crucial for recognition of pathogens within the cytosol. At a low MOI, IL-1ß secretion was minimal in CFT073-infected macrophages; however, IL-1ß release was markedly increased in macrophages infected with CFT073 lacking tcpC. Induction of IL-1ß secretion by CFT073 and tcpC-deficient CFT073 required the NLRP3 inflammasome. TcpC attenuated activation of the NLRP3 inflammasome by binding both NLRP3 and caspase-1 and thereby preventing processing and activation of caspase-1. Moreover, in a murine urinary tract infection model, CFT073 infection rapidly induced expression of the NLRP3 inflammasome in the bladder mucosa; however, the presence of TcpC in WT CFT073 reduced IL-1ß levels in the urine of infected mice. Together, these findings illustrate how uropathogenic E. coli use the multifunctional virulence factor TcpC to attenuate innate immune responses in the urinary tract.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli , Animals , Bone Marrow Cells/metabolism , Caspase 1/metabolism , Cytosol/metabolism , Escherichia coli Proteins/metabolism , Female , HEK293 Cells , Humans , Immunity, Innate , Interleukin-1beta/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Protein Domains , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL