Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Methods Mol Biol ; 2813: 309-320, 2024.
Article in English | MEDLINE | ID: mdl-38888786

ABSTRACT

Nanoparticle carriers enable the multivalent delivery of nucleic acids to cells and protect them from degradation. In this chapter, we present a comprehensive overview of four methodologies: electrophoretic mobility shift assay (EMSA), alamarBlue/CFDA-AM cell viability dyes, fluorescence microscopy, and antiviral assays, which collectively are tools to explore interactions between nucleic acids and nanoparticles, and their biological efficacy. These assays provide insights into binding potential, cytotoxicity, and antiviral efficacy of nucleic acid-based nanoparticle treatments furthering the development of effective antiviral therapeutics.


Subject(s)
Antiviral Agents , Nanoparticles , Nucleic Acids , Nanoparticles/chemistry , Antiviral Agents/pharmacology , Humans , Nucleic Acids/chemistry , Electrophoretic Mobility Shift Assay/methods , Cations/chemistry , Cell Survival/drug effects , Microscopy, Fluorescence , Drug Carriers/chemistry , Animals
2.
Mol Clin Oncol ; 19(2): 60, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37424627

ABSTRACT

Breast cancer is the most common cause of cancer worldwide and is the leading cause of mortality for women across most of the world. Immunotherapy is a burgeoning area of cancer treatment, including for breast cancer; these are therapies that harness the power of the immune system to clear cancerous cells. Toll-like receptor 3 (TLR3) is an RNA receptor found in the endosome, and ligands that bind to TLR3 are currently being tested for their efficacy as breast cancer immunotherapeutics. The current review introduces TLR3 and the role of this receptor in breast cancer, and summarizes data on the potential use of TLR3 ligands, mainly polyinosinic:polycytidylic acid and its derivatives, as breast cancer monotherapies or, more commonly, as combination therapies with chemotherapies, other immunotherapies and cancer vaccines. The current state of TLR3 ligand breast cancer therapy research is summarized by reporting on past and current clinical trials, and notable preliminary in vitro studies are discussed. In conclusion, TLR3 ligands have robust potential in anticancer applications as innate immune stimulants, and further studies combined with innovative technologies, such as nanoparticles, may contribute to their success.

SELECTION OF CITATIONS
SEARCH DETAIL