Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 111(3): 456-472, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38367619

ABSTRACT

The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.


Subject(s)
MicroRNAs , Smokers , Humans , Nicotine , Epigenesis, Genetic/genetics , Epigenome , Cohort Studies , Prospective Studies , Genome-Wide Association Study , DNA Methylation/genetics , CpG Islands/genetics , Receptors, Peptide/genetics , Receptors, G-Protein-Coupled/genetics
2.
PLoS Genet ; 19(5): e1010764, 2023 05.
Article in English | MEDLINE | ID: mdl-37256887

ABSTRACT

Females with polycystic ovary syndrome (PCOS), the most common endocrine disorder in women, have an increased risk of developing cardiometabolic disorders such as insulin resistance, obesity, and type 2 diabetes (T2D). While only diagnosable in females, males with a family history of PCOS can also exhibit a poor cardiometabolic profile. Therefore, we aimed to elucidate the role of sex in the cardiometabolic comorbidities observed in PCOS by conducting bidirectional genetic risk score analyses in both sexes. We first conducted a phenome-wide association study (PheWAS) using PCOS polygenic risk scores (PCOSPRS) to identify potential pleiotropic effects of PCOSPRS across 1,380 medical conditions recorded in the Vanderbilt University Medical Center electronic health record (EHR) database, in females and males. After adjusting for age and genetic ancestry, we found that European (EUR)-ancestry males with higher PCOSPRS were significantly more likely to develop hypertensive diseases than females at the same level of genetic risk. We performed the same analysis in an African (AFR)-ancestry population, but observed no significant associations, likely due to poor trans-ancestry performance of the PRS. Based on observed significant associations in the EUR-ancestry population, we then tested whether the PRS for comorbid conditions (e.g., T2D, body mass index (BMI), hypertension, etc.) also increased the odds of a PCOS diagnosis. Only BMIPRS and T2DPRS were significantly associated with a PCOS diagnosis in EUR-ancestry females. We then further adjusted the T2DPRS for measured BMI and BMIresidual (regressed on the BMIPRS and enriched for the environmental contribution to BMI). Results demonstrated that genetically regulated BMI primarily accounted for the relationship between T2DPRS and PCOS. Overall, our findings show that the genetic architecture of PCOS has distinct sex differences in associations with genetically correlated cardiometabolic traits. It is possible that the cardiometabolic comorbidities observed in PCOS are primarily explained by their shared genetic risk factors, which can be further influenced by biological variables including sex and BMI.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Polycystic Ovary Syndrome , Humans , Female , Male , Diabetes Mellitus, Type 2/complications , Risk Factors , Body Mass Index , Phenotype
3.
Hum Mol Genet ; 31(16): 2831-2843, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35138370

ABSTRACT

Differences by sex in lung cancer incidence and mortality have been reported which cannot be fully explained by sex differences in smoking behavior, implying existence of genetic and molecular basis for sex disparity in lung cancer development. However, the information about sex dimorphism in lung cancer risk is quite limited despite the great success in lung cancer association studies. By adopting a stringent two-stage analysis strategy, we performed a genome-wide gene-sex interaction analysis using genotypes from a lung cancer cohort including ~ 47 000 individuals with European ancestry. Three low-frequency variants (minor allele frequency < 0.05), rs17662871 [odds ratio (OR) = 0.71, P = 4.29×10-8); rs79942605 (OR = 2.17, P = 2.81×10-8) and rs208908 (OR = 0.70, P = 4.54×10-8) were identified with different risk effect of lung cancer between men and women. Further expression quantitative trait loci and functional annotation analysis suggested rs208908 affects lung cancer risk through differential regulation of Coxsackie virus and adenovirus receptor gene expression in lung tissues between men and women. Our study is one of the first studies to provide novel insights about the genetic and molecular basis for sex disparity in lung cancer development.


Subject(s)
Genome-Wide Association Study , Lung Neoplasms , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Lung , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Male , Polymorphism, Single Nucleotide/genetics
4.
Cancer ; 130(6): 913-926, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38055287

ABSTRACT

BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Humans , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Genome-Wide Association Study , Epigenesis, Genetic , Biomarkers , CpG Islands
5.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33713608

ABSTRACT

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Subject(s)
Black People/genetics , Body Height/genetics , Genome-Wide Association Study , Africa/ethnology , Black or African American/genetics , Europe/ethnology , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics
6.
PLoS Genet ; 17(3): e1009254, 2021 03.
Article in English | MEDLINE | ID: mdl-33667223

ABSTRACT

Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes rel to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.


Subject(s)
Carcinoma, Squamous Cell/genetics , Digestive System Neoplasms/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Alleles , Biomarkers, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Digestive System Neoplasms/metabolism , Digestive System Neoplasms/pathology , Genotype , Humans , Odds Ratio , Signal Transduction
7.
Hum Mol Genet ; 30(7): 619-628, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33704461

ABSTRACT

Major depressive disorder (MDD) is a common comorbidity in chronic obstructive pulmonary disease (COPD), affecting up to 57% of patients with COPD. Although the comorbidity of COPD and MDD is well established, the causal relationship between these two diseases is unclear. A large-scale electronic health record clinical biobank and genome-wide association study summary statistics for MDD and lung function traits were used to investigate potential shared underlying genetic susceptibility between COPD and MDD. Linkage disequilibrium score regression was used to estimate genetic correlation between phenotypes. Polygenic risk scores (PRS) for MDD and lung function traits were developed and used to perform a phenome-wide association study (PheWAS). Multi-trait-based conditional and joint analysis identified single-nucleotide polymorphisms (SNPs) influencing both lung function and MDD. We found genetic correlations between MDD and all lung function traits were small and not statistically significant. A PRS-MDD was significantly associated with an increased risk of COPD in a PheWAS [odds ratio (OR) = 1.12, 95% confidence interval (CI): 1.09-1.16] when adjusting for age, sex and genetic ancestry, but this relationship became attenuated when controlling for smoking history (OR = 1.08, 95% CI: 1.04-1.13). No significant associations were found between the lung function PRS and MDD. Multi-trait-based conditional and joint analysis identified three SNPs that may contribute to both traits, two of which were previously associated with mood disorders and COPD. Our findings suggest that the observed relationship between COPD and MDD may not be driven by a strong shared genetic architecture.


Subject(s)
Depressive Disorder, Major/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/genetics , Adult , Aged , Comorbidity , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/physiopathology , Female , Humans , Linkage Disequilibrium , Male , Middle Aged , Multifactorial Inheritance/genetics , Phenotype , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Risk Factors , Tennessee/epidemiology
8.
BMC Med ; 21(1): 163, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118782

ABSTRACT

BACKGROUND: Considerable evidence has been reported that tobacco use could cause alterations in gut microbiota composition. The microbiota-gut-brain axis also in turn hinted at a possible contribution of the gut microbiota to smoking. However, population-level studies with a higher evidence level for causality are lacking. METHODS: This study utilized the summary-level data of respective genome-wide association study (GWAS) for 211 gut microbial taxa and five smoking phenotypes to reveal the causal association between the gut microbiota and tobacco smoking. Two-sample bidirectional Mendelian randomization (MR) design was deployed and comprehensively sensitive analyses were followed to validate the robustness of results. We further performed multivariable MR to evaluate the effect of neurotransmitter-associated metabolites on observed associations. RESULTS: Our univariable MR results confirmed the effects of smoking on three taxa (Intestinimonas, Catenibacterium, and Ruminococcaceae, observed from previous studies) with boosted evidence level and identified another 13 taxa which may be causally affected by tobacco smoking. As for the other direction, we revealed that smoking behaviors could be potential consequence of specific taxa abundance. Combining with existing observational evidence, we provided novel insights regarding a positive feedback loop of smoking through Actinobacteria and indicated a potential mechanism for the link between parental smoking and early smoking initiation of their children driven by Bifidobacterium. The multivariable MR results suggested that neurotransmitter-associated metabolites (tryptophan and tyrosine, also supported by previous studies) probably played a role in the action pathway from the gut microbiota to smoking, especially for Actinobacteria and Peptococcus. CONCLUSIONS: In summary, the current study suggested the role of the specific gut microbes on the risk for cigarette smoking (likely involving alterations in metabolites) and in turn smoking on specific gut microbes. Our findings highlighted the hazards of tobacco use for gut flora dysbiosis and shed light on the potential role of specific gut microbiota for smoking behaviors.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Gastrointestinal Microbiome/genetics , Smoking/adverse effects , Genome-Wide Association Study , Mendelian Randomization Analysis , Clostridiales , Tobacco Smoking , Polymorphism, Single Nucleotide
9.
Genet Epidemiol ; 45(1): 99-114, 2021 02.
Article in English | MEDLINE | ID: mdl-32924180

ABSTRACT

Clinical trial results have recently demonstrated that inhibiting inflammation by targeting the interleukin-1ß pathway can offer a significant reduction in lung cancer incidence and mortality, highlighting a pressing and unmet need to understand the benefits of inflammation-focused lung cancer therapies at the genetic level. While numerous genome-wide association studies (GWAS) have explored the genetic etiology of lung cancer, there remains a large gap between the type of information that may be gleaned from an association study and the depth of understanding necessary to explain and drive translational findings. Thus, in this study we jointly model and integrate extensive multiomics data sources, utilizing a total of 40 genome-wide functional annotations that augment previously published results from the International Lung Cancer Consortium (ILCCO) GWAS, to prioritize and characterize single nucleotide polymorphisms (SNPs) that increase risk of squamous cell lung cancer through the inflammatory and immune responses. Our work bridges the gap between correlative analysis and translational follow-up research, refining GWAS association measures in an interpretable and systematic manner. In particular, reanalysis of the ILCCO data highlights the impact of highly associated SNPs from nuclear factor-κB signaling pathway genes as well as major histocompatibility complex mediated variation in immune responses. One consequence of prioritizing likely functional SNPs is the pruning of variants that might be selected for follow-up work by over an order of magnitude, from potentially tens of thousands to hundreds. The strategies we introduce provide informative and interpretable approaches for incorporating extensive genome-wide annotation data in analysis of genetic association studies.


Subject(s)
Genome-Wide Association Study , Lung Neoplasms , Epithelial Cells , Genetic Predisposition to Disease , Humans , Inflammation/genetics , Lung Neoplasms/genetics , Models, Genetic , Polymorphism, Single Nucleotide
10.
Prev Med ; 163: 107191, 2022 10.
Article in English | MEDLINE | ID: mdl-35964774

ABSTRACT

Limited research has explored the mental health impact of coronavirus disease 2019 (COVID-19) in the U.S., especially among Black and low-income Americans who are disproportionately affected by COVID-19. To address this gap in the literature, we investigated factors associated with depressive and anxiety symptoms during the pandemic. From October to December 2020, over 4400 participants in the Southern Community Cohort Study (SCCS) completed a survey about the impact of the pandemic. The SCCS primarily enrolled adults with low income in 12 southeastern states. We used polytomous unconditional logistic regression to investigate factors associated with depressive and anxiety symptoms. About 28% of respondents reported mild or moderate/severe depressive symptoms and 30% reported mild or moderate/severe anxiety symptoms. Respondents in fair/poor health had significantly higher odds of moderate/severe depression and anxiety than those in very good/excellent health (depression: odds ratio (OR) = 4.72 [95% confidence interval (CI): 3.57-6.23]; anxiety: OR = 4.77 [95%CI: 3.63-6.28]). Similarly, living alone was associated with higher odds of moderate/severe depression and anxiety (depression: OR = 1.74 [95%CI: 1.38-2.18]; anxiety: OR = 1.57 [95%CI: 1.27-1.95]). Individuals whose physical activity or vegetable/fruit consumption decreased since the start of the pandemic also had higher odds of moderate/severe depression and anxiety. Results overall suggest that individuals in fair/poor health, living alone, and/or experiencing decreased physical activity and vegetable/fruit consumption have higher risk of depressive and anxiety symptoms. Clinical and public health interventions are needed to support individuals experiencing depression and anxiety during the pandemic.


Subject(s)
COVID-19 , Adult , Anxiety/epidemiology , Anxiety/psychology , COVID-19/epidemiology , Cohort Studies , Depression/epidemiology , Depression/psychology , Humans , Pandemics , SARS-CoV-2 , United States/epidemiology
11.
J Public Health (Oxf) ; 44(1): 18-27, 2022 03 07.
Article in English | MEDLINE | ID: mdl-33512511

ABSTRACT

BACKGROUND: Collecting social determinants of health in electronic health records is time-consuming. Meanwhile, an Area Deprivation Index (ADI) aggregates sociodemographic information from census data. The objective of this study was to ascertain whether ADI is associated with stage of human papillomavirus (HPV)-related cancer at diagnosis. METHODS: We tested for the association between the stage of HPV-related cancer presentation and ADI as well as the association between stage and the value of each census-based measure using ordered logistic regression, adjusting for age, race and sex. RESULTS: Among 3247 cases of HPV-related cancers presenting to an urban academic medical center, the average age at diagnosis was 57. The average stage at diagnosis was Surveillance, Epidemiology and End Results Stage 3. In the study population, 43% of patients were female and 87% were white. In this study population, there was no association between stage of HPV-related cancer presentation and either aggregate or individual census variables. CONCLUSIONS: These results may reflect insufficient sample size, a lack of socio-demographic diversity in our population, or suggest that simplifying social determinants of health into a single geocoded index is not a reliable surrogate for assessing a patient's risk for HPV-related cancer.


Subject(s)
Alphapapillomavirus , Neoplasms , Papillomavirus Infections , Censuses , Female , Humans , Male , Neoplasms/diagnosis , Neoplasms/epidemiology , Papillomaviridae , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Papillomavirus Infections/epidemiology
12.
Genomics ; 113(1 Pt 2): 1018-1028, 2021 01.
Article in English | MEDLINE | ID: mdl-33161089

ABSTRACT

Public genomic repositories are notoriously lacking in racially and ethnically diverse samples. This limits the reaches of exploration and has in fact been one of the driving factors for the initiation of the All of Us project. Our particular focus here is to provide a model-based framework for accurately predicting DNA methylation from genetic data using racially sparse public repository data. Epigenetic alterations are of great interest in cancer research but public repository data is limited in the information it provides. However, genetic data is more plentiful. Our phenotype of interest is cervical cancer in The Cancer Genome Atlas (TCGA) repository. Being able to generate such predictions would nicely complement other work that has generated gene-level predictions of gene expression for normal samples. We develop a new prediction approach which uses shared random effects from a nested error mixed effects regression model. The sharing of random effects allows borrowing of strength across racial groups greatly improving predictive accuracy. Additionally, we show how to further borrow strength by combining data from different cancers in TCGA even though the focus of our predictions is DNA methylation in cervical cancer. We compare our methodology against other popular approaches including the elastic net shrinkage estimator and random forest prediction. Results are very encouraging with the shared classified random effects approach uniformly producing more accurate predictions - overall and for each racial group.


Subject(s)
DNA Methylation , Uterine Cervical Neoplasms/genetics , Black People/genetics , Data Interpretation, Statistical , Female , Humans , Uterine Cervical Neoplasms/ethnology , Uterine Cervical Neoplasms/pathology , White People/genetics
13.
Int J Cancer ; 148(5): 1077-1086, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32914876

ABSTRACT

At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06, P = 2.70 × 10-4 ). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR = 1.28, 95% CI = 1.06-1.55, PMVMR = .011), and an inverse effect on lung adenocarcinoma (ORMVMR = 0.86, 95% CI = 0.77-0.96, PMVMR = .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR = 1.19, 95% CI = 1.01-1.40, PUVMR = .036), but this effect disappeared after adjustment of smoking (ORMVMR = 1.02, 95% CI = 0.90-1.16, PMVMR = .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.


Subject(s)
Body Mass Index , Lung Neoplasms/etiology , Mendelian Randomization Analysis/methods , Smoking/adverse effects , Genome-Wide Association Study , Humans , Obesity/complications , Polymorphism, Single Nucleotide
14.
Am J Phys Anthropol ; 175(4): 905-919, 2021 08.
Article in English | MEDLINE | ID: mdl-34008864

ABSTRACT

OBJECTIVES: Gullah African Americans are descendants of formerly enslaved Africans living in the Sea Islands along the coast of the southeastern U.S., from North Carolina to Florida. Their relatively high numbers and geographic isolation were conducive to the development and preservation of a unique culture that retains deep African features. Although historical evidence supports a West-Central African ancestry for the Gullah, linguistic and cultural evidence of a connection to Sierra Leone has led to the suggestion of this country/region as their ancestral home. This study sought to elucidate the genetic structure and ancestry of the Gullah. MATERIALS AND METHODS: We leveraged whole-genome genotype data from Gullah, African Americans from Jackson, Mississippi, African populations from Sierra Leone, and population reference panels from Africa and Europe to infer population structure, ancestry proportions, and global estimates of admixture. RESULTS: Relative to non-Gullah African Americans from the Southeast US, the Gullah exhibited higher mean African ancestry, lower European admixture, a similarly small Native American contribution, and increased male-biased European admixture. A slightly tighter bottleneck in the Gullah 13 generations ago suggests a largely shared demographic history with non-Gullah African Americans. Despite a slightly higher relatedness to populations from Sierra Leone, our data demonstrate that the Gullah are genetically related to many West African populations. DISCUSSION: This study confirms that subtle differences in African American population structure exist at finer regional levels. Such observations can help to inform medical genetics research in African Americans, and guide the interpretation of genetic data used by African Americans seeking to explore ancestral identities.


Subject(s)
Black People , Black or African American , Africa , Black or African American/genetics , Black People/genetics , Europe , Genotype , Humans , Male
15.
Am J Respir Crit Care Med ; 202(7): e95-e112, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33000953

ABSTRACT

Background: There are well-documented disparities in lung cancer outcomes across populations. Lung cancer screening (LCS) has the potential to reduce lung cancer mortality, but for this benefit to be realized by all high-risk groups, there must be careful attention to ensuring equitable access to this lifesaving preventive health measure.Objectives: To outline current knowledge on disparities in eligibility criteria for, access to, and implementation of LCS, and to develop an official American Thoracic Society statement to propose strategies to optimize current screening guidelines and resource allocation for equitable LCS implementation and dissemination.Methods: A multidisciplinary panel with expertise in LCS, implementation science, primary care, pulmonology, health behavior, smoking cessation, epidemiology, and disparities research was convened. Participants reviewed available literature on historical disparities in cancer screening and emerging evidence of disparities in LCS.Results: Existing LCS guidelines do not consider racial, ethnic, socioeconomic, and sex-based differences in smoking behaviors or lung cancer risk. Multiple barriers, including access to screening and cost, further contribute to the inequities in implementation and dissemination of LCS.Conclusions: This statement identifies the impact of LCS eligibility criteria on vulnerable populations who are at increased risk of lung cancer but do not meet eligibility criteria for screening, as well as multiple barriers that contribute to disparities in LCS implementation. Strategies to improve the selection and dissemination of LCS in vulnerable groups are described.


Subject(s)
Decision Making, Shared , Early Detection of Cancer/statistics & numerical data , Health Services Accessibility/statistics & numerical data , Healthcare Disparities/ethnology , Lung Neoplasms/diagnosis , Smoking/ethnology , Eligibility Determination , Ethnicity/statistics & numerical data , Health Care Costs , Healthcare Disparities/statistics & numerical data , Humans , Implementation Science , Insurance Coverage , Marketing of Health Services/methods , Medicaid , Medically Uninsured/statistics & numerical data , Minority Groups/statistics & numerical data , Practice Guidelines as Topic , Referral and Consultation/statistics & numerical data , Sex Factors , Smoking/epidemiology , Smoking/therapy , Smoking Cessation/statistics & numerical data , Social Class , United States
16.
Int J Cancer ; 146(10): 2855-2864, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31577861

ABSTRACT

Genome-wide association studies (GWAS) have identified 45 susceptibility loci associated with lung cancer. Only less than SNPs, small insertions and deletions (INDELs) are the second most abundant genetic polymorphisms in the human genome. INDELs are highly associated with multiple human diseases, including lung cancer. However, limited studies with large-scale samples have been available to systematically evaluate the effects of INDELs on lung cancer risk. Here, we performed a large-scale meta-analysis to evaluate INDELs and their risk for lung cancer in 23,202 cases and 19,048 controls. Functional annotations were performed to further explore the potential function of lung cancer risk INDELs. Conditional analysis was used to clarify the relationship between INDELs and SNPs. Four new risk loci were identified in genome-wide INDEL analysis (1p13.2: rs5777156, Insertion, OR = 0.92, p = 9.10 × 10-8 ; 4q28.2: rs58404727, Deletion, OR = 1.19, p = 5.25 × 10-7 ; 12p13.31: rs71450133, Deletion, OR = 1.09, p = 8.83 × 10-7 ; and 14q22.3: rs34057993, Deletion, OR = 0.90, p = 7.64 × 10-8 ). The eQTL analysis and functional annotation suggested that INDELs might affect lung cancer susceptibility by regulating the expression of target genes. After conducting conditional analysis on potential causal SNPs, the INDELs in the new loci were still nominally significant. Our findings indicate that INDELs could be potentially functional genetic variants for lung cancer risk. Further functional experiments are needed to better understand INDEL mechanisms in carcinogenesis.


Subject(s)
Genetic Predisposition to Disease/genetics , INDEL Mutation/genetics , Lung Neoplasms/genetics , Genome-Wide Association Study , Humans
17.
Int J Cancer ; 146(7): 1862-1878, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31696517

ABSTRACT

We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large-scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome-wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never- and ever-smokers). We performed replication analysis using lung data from the Genotype-Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever-smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E-99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E-6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3-adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E-5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.


Subject(s)
Biomarkers, Tumor , Genetic Predisposition to Disease , Genome-Wide Association Study , Lung Neoplasms/genetics , Transcriptome , Cell Line, Tumor , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
18.
Carcinogenesis ; 40(3): 432-440, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30590402

ABSTRACT

DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.


Subject(s)
Deoxyribonuclease I/metabolism , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci
19.
Am J Phys Anthropol ; 169(3): 482-497, 2019 07.
Article in English | MEDLINE | ID: mdl-31125126

ABSTRACT

OBJECTIVES: From a genetic perspective, relatively little is known about how mass emigrations of African, European, and Asian peoples beginning in the 16th century affected Indigenous Caribbean populations. Therefore, we explored the impact of serial colonization on the genetic variation of the first Caribbean islanders. MATERIALS AND METHODS: Sixty-four members of St. Vincent's Garifuna Community and 36 members of Trinidad's Santa Rosa First People's Community (FPC) of Arima were characterized for mitochondrial DNA and Y-chromosome diversity via direct sequencing and targeted SNP and STR genotyping. A subset of 32 Garifuna and 18 FPC participants were genotyped using the GenoChip 2.0 microarray. The resulting data were used to examine genetic diversity, admixture, and sex biased gene flow in the study communities. RESULTS: The Garifuna were most genetically comparable to African descendant populations, whereas the FPC were more similar to admixed American groups. Both communities also exhibited moderate frequencies of Indigenous American matrilines and patrilines. Autosomal SNP analysis indicated modest Indigenous American ancestry in these populations, while both showed varying degrees of African, European, South Asian, and East Asian ancestry, with patterns of sex-biased gene flow differing between the island communities. DISCUSSION: These patterns of genetic variation are consistent with historical records of migration, forced, or voluntary, and suggest that different migration events shaped the genetic make-up of each island community. This genomic study is the highest resolution analysis yet conducted with these communities, and provides a fuller understanding of the complex bio-histories of Indigenous Caribbean peoples in the Lesser Antilles.


Subject(s)
Racial Groups/genetics , Racial Groups/history , Adult , Chromosomes, Human, Y/genetics , DNA/genetics , DNA, Mitochondrial/genetics , Female , Genetics, Population , History, 15th Century , History, 16th Century , History, 18th Century , History, 19th Century , History, Ancient , Human Migration/history , Humans , Male , Saint Vincent and the Grenadines , Trinidad and Tobago
20.
PLoS Genet ; 12(5): e1006059, 2016 05.
Article in English | MEDLINE | ID: mdl-27232753

ABSTRACT

We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15-16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance.


Subject(s)
Black or African American/genetics , Genetics, Population , Genomics , Black People/genetics , Demography , Europe , Gene Frequency , Genotype , Human Migration , Humans , Polymorphism, Single Nucleotide/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL