ABSTRACT
This study investigates the colonization of endophytic fungi in nettle leaf tissues and evaluates their antibacterial and antioxidant activities. Using an inverted optical microscope, extensive fungal colonization was observed in all leaf parts, with hyphae prevalent in epidermal cells, parenchyma cells, and vascular tissues. 144 endophytic fungal isolates were isolated from 800 leaf fragments, indicating an 18% retention rate. ANOVA analysis revealed significant differences (p < 0. 001) in colonization frequencies among 20 subjects, with subject 3 showing the highest frequency (40%) and subject 11 the lowest (2. 5%). Ethyl acetate extracts of the three most abundant endophytic fungi demonstrated notable antibacterial activity against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Inhibition zones ranged from 9. 5 to 15. 16 mm, with minimum inhibitory concentrations (MICs) between 0. 19 to 25 mg/mL. Alternaria sp. exhibited the highest antimicrobial activity against MRSA. Antioxidant activity was assessed using the DPPH radical scavenging test and FRAP method. All extracts showed substantial free radical scavenging properties, with IC50 values close to those of standards like BHT. Alternaria sp. had the highest antioxidant activity, followed by Epicocum sp. and Ulocladium sp. The FRAP method confirmed high reducing potential, with Alternaria sp. again exhibiting the highest activity. These findings highlight the potential of endophytic fungi in nettle leaves as sources of antimicrobial and antioxidant agents, with significant implications for pharmaceutical and biotechnological applications.
Subject(s)
Anti-Infective Agents , Antioxidants , Endophytes , Fungi , Microbial Sensitivity Tests , Plant Leaves , Antioxidants/pharmacology , Antioxidants/chemistry , Fungi/drug effects , Endophytes/chemistry , Plant Leaves/microbiology , Plant Leaves/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistryABSTRACT
Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2-95.5%). The main components were 1,8-cineole (65.6-86.1%), α-terpinyl acetate (2.5-7.6%), o-cymene (3.3-7.5%), and α-terpineol (3.3-3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.
Subject(s)
Eucalyptus , Insect Repellents , Myrtaceae , Oils, Volatile , Oils, Volatile/chemistry , Eucalyptus/chemistry , Myrtaceae/chemistry , Plant Leaves/chemistry , Insect Repellents/chemistry , Anti-Bacterial Agents/chemistry , Plant Oils/chemistryABSTRACT
A series of novel 5-methoxy-2,3-naphthalimide derivatives were designed, synthesized and evaluated for their biological activities. In particular, the ability of the compounds to synergize with antimicrobials, to inhibit Nile Red efflux, and to target AcrB was assayed. The results showed that the most of the tested compounds more sensitized the Escherichia coli BW25113 to the antibiotics than the parent compounds 7c and 15, which were able to inhibit Nile Red efflux. Significantly, compound A5 possessed the most potent antibacterial synergizing activity in combination with levofloxacin by 4 times and 16 times at the concentration of 8 and 16⯵g/mL, respectively, whilst A5 could effectively abolish Nile Red efflux at 100⯵M. Additionally, target effect of A5 was confirmed in the outer- or inner membrane permeabilization assays. Therefore, A5 is an excellent lead compound for further structural optimization.
Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Naphthalimides/chemical synthesis , Naphthalimides/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Molecular Structure , Naphthalimides/chemistry , Structure-Activity RelationshipABSTRACT
Multidrug-resistant bacterial pathogens, such as E. coli, represent a major human health threat. Due to the critical need to overcome this dilemma, since the drug efflux pump has a vital function in the evolution of antimicrobial resistance in bacteria, we have investigated the potential of Mentha essential oil major constituents (1-19) as antimicrobial agents via their ability to inhibit pathogenic DNA gyrase and, in addition, their potential inhibition of the E. coli AcrB-TolC efflux pump, a potential target to inhibit MDR pathogens. The ligand docking approach was conducted to analyze the binding interactions of Mentha EO constituents with the target receptors. The obtained results proved their antimicrobial activity through the inhibition of DNA gyrase (1kzn) with binding affinity ΔG values between -4.94 and -6.49 kcal/mol. Moreover, Mentha EO constituents demonstrated their activity against MDR E. coli by their ability to inhibit AcrB-TolC (4dx7) with ΔG values ranging between -4.69 and -6.39 kcal/mol. The antimicrobial and MDR activity of Mentha EOs was supported via hydrogen bonding and hydrophobic interactions with the key amino acid residues at the binding site of the active pocket of the targeted receptors.
ABSTRACT
Background: Escherichia coli is one of the serious pathogens causing various infections in the animal field, such as neonatal calf diarrhea, which is responsible for mortality associated with diarrhea during the first days of life. Aim: Current work is aimed at designing an effective and safe multiepitope vaccine candidate against E. coli infection in calves based on the fimbrial protein K99 of Enterotoxigenic E. coli (ETEC) and Immuno-informatics. Methods: A conserved sequence of K99 protein was generated, and then highly antigenic, nonallergic, and overlapped epitopes were used to construct a multiepitope vaccine. Five THL, six MHC II, and four beta cell epitopes were targeted to create the candidate. The candidate vaccine was produced utilizing 15 epitopes and three types of linkers, two types of untranslated region (UTR) human hemoglobin subunit beta (HBB), UTR beta-globin (Rabb), and RpfE protein as an immunomodulation adjuvant. Results: Immuno-informatics analysis of the constructed protein showed that the protein was antigenic (antigenic score of 0.8841), stable, nonallergen, and soluble. Furthermore, the Immuno-informatics and physiochemical analysis of the constructed protein showed a stable, nonallergic, soluble, hydrophilic, and acidic PI (isoelectric point). of 9.34. Docking of the candidate vaccine with the toll-like receptor TLR3 was performed, and results showed a strong interaction between the immune receptor and the vaccine. Finally, the expression efficiency of the construct in E. coli was estimated via computational cloning of the vaccine sequence into Pet28a. Conclusion: Results of immunoinformatics and in silico approaches reveal that the designed vaccine is antigenic, stable, and able to bind to the immune cell receptors. Our results interpret the proposed multiepitope mRNA vaccine as a good preventive option against E. coli infection in calves.
Subject(s)
Cattle Diseases , Computational Biology , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Vaccines , Animals , Cattle , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Cattle Diseases/prevention & control , Cattle Diseases/immunology , Cattle Diseases/microbiology , Epitopes/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Models, Molecular , ImmunoinformaticsABSTRACT
The microbial analysis of fish is critical for ensuring overall health. Uncooked fish can serve as a conduit for transmitting several types of microbes; the current investigation sought to assess the bacterial levels in various kinds of fish from Nasser Lake, Aswan, Egypt, considered the chief source of potable water in Egypt. Two hundred and fifty fish samples, including 50 of each Oreochromis niloticus, Sander lucioperca, Lates niloticus, Clarias gariepinus, and Mormyrus kannume, from Nasser Lake, Aswan, Egypt, were collected to detect the bacterial load, isolation, and identification of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio parahaemolyticus and their virulence genes. The findings revealed that Oreochromis niloticus and Clarias gariepinus exhibited higher bacterial loads than other fish species. Incidences of bacterial contamination among examined fishes were 28.8%, 20.4%, and 16% for Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio parahaemolyticus, respectively. Additionally, PCR analysis detected the presence of aerA (60%) and Act (40%) genes in A. hydrophila, rpoB (70%) and LasB (30%) genes in P. aeruginosa, and ToxR (70%) and tdh (50%) genes in V. parahaemolyticus. The study suggested that the bacterial contamination levels in Oreochromis niloticus and Clarias gariepinus could be notably more significant than in other species that could potentially be harmful to the consumers, especially considering the identification of particular bacteria known to cause foodborne illnesses. Further recommendations emphasized that regular monitoring and assessments are required to preserve their quality.
ABSTRACT
Medicinal plants are used widely in the treatment of various infectious diseases. One of these medical plants is Moroccan plants such as Anacyclus pyrethrum. In this study, the essential oil isolated from the leaves of Anacyclus pyrethrum (APEO) by the hydrodistillation method was analyzed using (GC/MS) analysis. A total of forty-four compounds were identified form the oil and the oxygenated monoterpenes were the most abundant class of compounds. The major identified compound is santolina alcohol (40.7 %), followed by germacrene-D (8.9 %). The in-vitro assessment of the antimicrobial efficacy of APEO encompassed an investigation involving six microbial strains, including two Gram-positive bacteria, four Gram-negative bacteria, and three fungal strains. The findings revealed noteworthy antibacterial and antifungal properties against all examined microorganisms, with inhibitory zone diameters ranging from 25.67 ± 0.06 mm to 25.19 ± 0.03 mm for Gram-positive bacteria and from 22.34 ± 0.01 mm to 14.43 ± 0.02 mm for Gram-negative bacteria, as determined through the disc-diffusion assay. In the case of antifungal activity, inhibitory zones ranged from 24.57 ± 0.04 mm to 18.37 ± 0.06 mm. Further evaluation revealed that the MIC values of Gram-positive bacteria were at the concentration 0.25 % v/v, while MBC values ranged from 0.25 % to 1.0 % v/v. The Gram-negative bacteria exhibited MIC values spanning from 0.5 % to 2.0 % v/v, with MBC values in the range of 0.5 %-2.0 % v/v. For the fungal strains, MIC values ranged from 0.5 % to 1.0 % v/v, while the MFC consistently remained at 1.0 % for all tested fungal strains. The assessment of the MBC/MIC and MFC/MIC ratios collectively indicates that A. pyrethrum EO possesses bactericidal and fungicidal attributes. The in silico study of bioavailability predictions for compounds in APEO based on six physicochemical properties show optimal physiochemical properties including size, lipophilicity, solubility, flexibility, and saturation. α-Pinene, limonene, germacrene D, and (E)-ß-farnesene are non-polar due to their lack of polar groups, and the ADME profile indicates desirable properties for considering these compounds in drug development. Molecular docking investigation indicates that all the compounds of APEO reside well into the binding site of the DNA gyrase B enzyme of Staphylococcus aureus by mediating a number of significant interactions with the binding site residues. The ADME analysis suggested that the major compounds APEO possess desirable properties for further consideration in drug development. In light of these findings, APEO could serve as a natural source for the elaboration of new and active antimicrobial drugs.
ABSTRACT
Multidrug-resistant (MDR) Gram-negative bacteria remain a global public health issue due to the barrier imposed by their outer membrane and their propensity to form biofilms. It is becoming imperative to develop new antibacterial strategies. In this context, this study aims to evaluate the antibacterial efficacy of Origanum vulgare essential oil (OEO), alone and in combination with antibiotics, as well as its antibiofilm action against multidrug-resistant Gram-negative strains. OEO components were identified by gas chromatography-mass spectrometry (GC-MS), and antibacterial activity was assessed using the agar diffusion test and the microdilution method. Interactions between OEO and antibiotics were examined using the checkerboard method, while antibiofilm activity was analyzed using the crystal violet assay. Chemical analysis revealed that carvacrol was the major compound in OEO (61.51%). This essential oil demonstrated activity against all the tested strains, with inhibition zone diameters (IZDs) reaching 32.3 ± 1.5 mm. The combination of OEO with different antibiotics produced synergistic and additive effects, leading to a reduction of up to 98.44% in minimum inhibitory concentrations (MICs). In addition, this essential oil demonstrated an ability to inhibit and even eradicate biofilm formation. These results suggest that OEO could be exploited in the development of new molecules, combining its metabolites with antibiotics.
ABSTRACT
Multidrug-resistant bacteria are becoming the leading cause of death globally due to their resistance to many currently used antibiotics. Bacteria naturally have intrinsic resistance or acquired resistance to certain commonly used antibiotics. Therefore, searching for novel compounds has become necessary. Trigonella foenumgraecum extract was evaluated for antimicrobial and antibiofilm activities against multidrug-resistant bacteria Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentration and minimum bactericidal concentration of the extract were also determined. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis was used to identify the phytochemical components present in the extract. GC-MS analysis revealed that T. foenumgraecum extract contains major compounds such as Phenol, 2-methoxy-3-(2-propenyl)-, n-Hexadecanoic acid, and 9,12,15-Octadecatrienoic acid. Both bacterial strains showed resistance to some of the antibiotics tested. T. foenumgraecum showed inhibitory activity against the tested bacterial strains with a MIC of 500 µg/mL and MBC of 1000 µg/mL. The methanol extract decreased the biofilm activity of both E. coli and S. aureus below the sub-minimum inhibitory concentration. The extract showed antibacterial and antibiofilm activity against the tested bacterial pathogens.
ABSTRACT
The present study was conducted to investigate the chemical composition of Ailanthus altissima (Mill.) Swingle methanolic leaf extracts from geographically distinct regions and to assess their antimicrobial properties along with their ability to induce oxidative stress. The HPLC-DAD analysis revealed the presence of phenolic acids and flavonoids including chlorogenic acid, gallic acid, synapic acid, p-coumaric acid, apigenin, hyperoside, isoamnétine-3-O-beta-D-glucotrioside, quercetin, and isoquercetin in various amounts depending on the origin of tested extracts. The assessment of antibacterial activity showed the effectiveness of the A. altissima extracts particularly against Gram-positive bacteria, with inhibition zone diameters reaching 14 ± 1 mm and minimum inhibitory concentrations ranging from 4 to 72.2 mg/mL. These bioactive substances also exhibited strong antibiofilm activity with an eradication percentage reaching 67.07%. Furthermore, they increased ROS production to levels two to five times higher than the control group, altered the membrane integrity and caused lipid peroxidation with MDA production exceeding 2.5 µmol/mg protein in the Gram-positive and Gram-negative strains. A decrease in the levels of the antioxidant enzymes SOD and CAT was also observed, indicating an impairment of the bacterial response to the oxidative stress caused by the tested extracts. These findings highlight the antibacterial properties of A. altissima leaf extracts depending on their origins and promote their exploitation and application in the agro-food and pharmaceutical sectors.
ABSTRACT
Melia azedarach L., a Meliaceae family tree, is widely used in traditional folkloric medicine for its pharmaceutical properties. In the present study, we investigated the phytochemical composition of four methanolic leaf extracts of M. azedarach of various origins (Algeria and Tunisia) using high-performance liquid chromatography (HPLC). The antibacterial efficacy and mechanisms of action against Gram-positive and Gram-negative pathogenic microorganisms were then evaluated. Our findings revealed a presence of phenolic acids and flavonoids, such as gallic acid, chlorogenic acid, caffeic acid, hyperoside, isoquercetin, quercetin, and isorhamnetin both in Algerian and Tunisian localities, with an abundance of phenolic acids compared to flavonoids. Additionally, the studied extracts exhibit a broad spectrum of antibacterial activities, with MIC values ranging from 31.25 mg/mL to 125 mg/mL. Methanolic leaf extracts of M. azedarach from Algeria exhibited more potent biofilm eradication, with a percentage of inhibition reaching 72.17% against the S. aureus strain. Furthermore, inhibitory concentrations of tested substances, particularly the extract from the Relizane area, were capable of disrupting the membrane integrity of the treated bacteria as well as producing oxidative stress through ROS generation. Likewise, our results reveal that plant extract induces lipid peroxidation by raising MDA levels in comparison to untreated cells, particularly with the plant extract of Blida. M. azedarach extracts also reduced the synthesis of antioxidant enzymes (CAT and SOD). Our findings illustrate that M. azedarach remains a plant with significant antibacterial potential and distinct mechanisms of action that are closely related to the origins of this specimen.
ABSTRACT
Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined by X-ray diffraction (XRD). The crystalline size of synthesized zinc molybdate was 24.9 nm. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) clearly showed the attachment of molybdate with ZnO. The synthesized nanomaterial was also characterized through UV-visible spectroscopy which had 4.40 eV band gap energy. Those nanoparticles were also characterized via thermogravimetric analysis (TGA-DTA) and photoluminance spectroscopy (PL). ZnMoO4 had photocatalytic property via methylene blue dye. After 190 minutes, the dye changed to colourless from blue colour. The degradation efficiency was around 92.8%. It also showed their antibacterial effect via Escherichia coli and Staphylococcusaureus bacterial strains. In the presence of light and air, nanoparticles of ZnMoO4 inhibit the growth of cells of E. coli and S. aureus bacterial strains because of ROS (reactive oxygen species) generation. Because of the formation of singlet oxygen (O2∗-), hydrogen oxide radical (-OH∗), and hydrogen peroxide (H2O2), ZnMoO4 showed photodegradation reaction against aq. solution of methylene blue dye at 6 pH with constant time interval. With time, the activity of ZnMoO4 also decreased because of the generation of a layer of hydrogen oxide (-OH) on nanomaterial surface, which could be washed with ethanol and distilled water. After drying, the catalytic Zinc molybdate nanoparticles could be reused again in the next catalytic reaction.
ABSTRACT
BACKGROUND: The process of mass immunization against COVID-19 may be impacted by vaccine reluctance despite intense and ongoing efforts to boost vaccine coverage. The COVID-19 vaccine is a crucial component for controlling the pandemic. To the best of our knowledge, we did not come across any study presenting the post-vaccination side-effect profile among the Sudanese population. Developing strategies to improve the vaccine acceptability and uptake necessitate evidence-based reports about vaccine's side effects and acceptance. In this regard, this study aimed at estimating the prevalence of COVID-19 vaccine side-effects among the general population in Sudan. METHODOLOGY: A cross-sectional web-based quantitative study was conducted among the general population aged ≥18 years and residing in the Khartoum state of Sudan. A 30-item survey tool recorded the demographics, chronic diseases, allergy to other vaccines and COVID-19 vaccine side-effects after the first, second and booster doses. The data on the onset and duration of side-effects after each dose were also recorded. The distribution of side-effect scores after each dose of COVID-19 vaccine was compared using appropriate statistical methods. RESULTS: A total of 626 participants were approached for this study. There was a preponderance of females (57.7%), and 19% of respondents had chronic diseases. The vaccination rate against COVID-19 was 55.8% (n = 349/626). The prevalence of side-effects after the first, second and booster doses were 79.7, 48 and 69.4%, respectively. Pain at the injection site, headache, fatigue, exhaustion and fever were the common side-effects after the first and second doses, while pain at the injection site, fatigue, headache and muscle pain were frequently reported after the booster dose. Most of these side-effects appeared within 6 h and resolved within one or two days following the administration of the vaccine dose. The average side-effects scores were 4.1 ± 4.4 (n = 349), 2.2 ± 3.6 (n = 202) and 3.5 ± 4.1 (n = 36) after the first, second and booster doses, respectively. The female gender had significantly higher side-effects after primary and booster doses. The age group 18-24 years indicated higher side-effects after the first dose compared to participants with ages ranging from 31 to 40 years (p = 0.014). Patients with chronic disease indicated significantly higher (p = 0.043) side-effects compared to those without any comorbid illness. CONCLUSIONS: This study showed a high prevalence of transient COVID-19 vaccine-related side-effects after primary and booster doses. However, these side-effects waned within 48 h. Pain at the injection site was the most common local side-effect, while fatigue, fever, headache and muscle pain were frequently reported systemic side-effects. The frequency of side-effects was more profound among females, young adults and those with comorbid conditions. These findings indicate that COVID-19 vaccines are safe and have side-effects as reported in the clinical trials of the vaccines. These results aid in addressing the ongoing challenges of vaccine hesitancy in the Sudanese population that is nurtured by widespread concerns over the safety profile.
ABSTRACT
Bacteriophages are the most abundant biological entity on the planet, having pivotal roles in bacterial ecology, animal and plant health, and in the biogeochemical cycles. Although, in principle, phages are simple entities that replicate at the expense of their bacterial hosts, due the importance of bacteria in all aspects of nature, they have the potential to influence and modify diverse processes, either in subtle or profound ways. Traditionally, the main application of bacteriophages is phage therapy, which is their utilization to combat and help to clear bacterial infections, from enteric diseases, to skin infections, chronic infections, sepsis, etc. Nevertheless, phages can also be potentially used for several other tasks, including food preservation, disinfection of surfaces, treatment of several dysbioses, and modulation of microbiomes. Phages may also be used as tools for the treatment of non-bacterial infections and pest control in agriculture; moreover, they can be used to decrease bacterial virulence and antibiotic resistance and even to combat global warming. In this review manuscript we discuss these possible applications and promote their implementation.
Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Animals , Bacteria , Bacterial Infections/therapyABSTRACT
Infections caused by multidrug resistance (MDR) of Gram-negative bacteria have become one of the most severe public health problems worldwide. The main mechanism that confers MDR to bacteria is drug efflux pumps, as they expel a wide range of compounds, especially antibiotics. Among the different types of drug efflux pumps, the resistance nodulation division (RND) superfamily confers MDR to various Gram-negative bacteria species. The AcrAB-TolC multidrug efflux pump, from E. coli, a member of RND, is the best-characterized example and an excellent model for understanding MDR because of an abundance of functional and structural data. Small molecule inhibitors that target the AcrAB-TolC drug efflux pump represent a new solution to reversing MDR in Gram-negative bacteria and restoring the efficacy of various used drugs that are clinically relevant to these pathogens, especially in the high shortage of drugs for multidrug-resistant Gram-negative bacteria. This review will investigate solutions of MDR in Gram-negative bacteria by studying the inhibition of the AcrAB-TolC multidrug efflux pump.
ABSTRACT
Drug efflux pumps have emerged as a new drug targets for the treatment of bacterial infections in view of its critical role in promoting multidrug resistance. Herein, novel chromanone and 2H-benzo[h]chromene derivatives were designed by means of integrated molecular design and structure-based pharmacophore modeling in an attempt to identify improved efflux pump inhibitors that target Escherichia coli AcrB. The compounds were tested for their efflux inhibitory activity, ability to inhibit efflux, and the effect on bacterial outer and inner membranes. Twenty-three novel structures were identified that synergized with antibacterials tested, inhibited Nile Red efflux, and acted specifically on the AcrB. Among them, WK2, WL7 and WL10 exhibiting broad-spectrum and high-efficiency efflux inhibitory activity were identified as potential ideal AcrB inhibitors. Molecular modeling further revealed that the strong π-π stacking interactions and hydrogen bond networks were the major contributors to tight binding of AcrB.