Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Immunity ; 57(2): 319-332.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38295798

ABSTRACT

Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.


Subject(s)
Intestinal Mucosa , Microbiota , Adult , Mice , Humans , Animals , Tuft Cells , Butyrates/pharmacology , Butyrates/metabolism , Immunity, Innate , Lymphocytes/metabolism , Intestines , Histone Deacetylases/metabolism , Cell Differentiation
2.
Immunity ; 55(12): 2222-2224, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516815

ABSTRACT

Cellular dynamics that influence mucosal healing are not well understood. In this issue of Immunity, Frede, Czarnewski, Monasterio et al. find that B cells accumulate in the colon following intestinal injury. These B cells impair epithelial repair by hindering local stromal-epithelial interactions.


Subject(s)
Intention , Intestinal Mucosa , Colon , Epithelial Cells
3.
Immunity ; 52(2): 275-294.e9, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075728

ABSTRACT

Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.


Subject(s)
Immunity, Innate , Insulin-Like Growth Factor I/metabolism , Lung/immunology , Lymphocytes/cytology , Alveolar Epithelial Cells/metabolism , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/immunology , Cell Differentiation , Cell Proliferation , Disease Susceptibility/immunology , Humans , Infant, Newborn , Infant, Premature , Insulin-Like Growth Factor I/deficiency , Interleukins/metabolism , Lung/cytology , Lung/growth & development , Lymphocytes/metabolism , Mice , Pneumonia/immunology , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction , Interleukin-22
4.
Nat Immunol ; 16(1): 27-35, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25521682

ABSTRACT

The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury.


Subject(s)
Immunity, Innate/immunology , Lung/immunology , Respiratory Mucosa/immunology , Animals , Homeostasis/immunology , Humans , Lung/cytology , Mucins/immunology , Respiratory Mucosa/cytology , Signal Transduction/immunology
5.
Nature ; 586(7827): 108-112, 2020 10.
Article in English | MEDLINE | ID: mdl-32731255

ABSTRACT

The coevolution of mammalian hosts and their beneficial commensal microbes has led to development of symbiotic host-microbiota relationships1. Epigenetic machinery permits mammalian cells to integrate environmental signals2; however, how these pathways are fine-tuned by diverse cues from commensal bacteria is not well understood. Here we reveal a highly selective pathway through which microbiota-derived inositol phosphate regulates histone deacetylase 3 (HDAC3) activity in the intestine. Despite the abundant presence of HDAC inhibitors such as butyrate in the intestine, we found that HDAC3 activity was sharply increased in intestinal epithelial cells of microbiota-replete mice compared with germ-free mice. This divergence was reconciled by the finding that commensal bacteria, including Escherichia coli, stimulated HDAC activity through metabolism of phytate and production of inositol-1,4,5-trisphosphate (InsP3). Both intestinal exposure to InsP3 and phytate ingestion promoted recovery following intestinal damage. Of note, InsP3 also induced growth of intestinal organoids derived from human tissue, stimulated HDAC3-dependent proliferation and countered butyrate inhibition of colonic growth. Collectively, these results show that InsP3 is a microbiota-derived metabolite that activates a mammalian histone deacetylase to promote epithelial repair. Thus, HDAC3 represents a convergent epigenetic sensor of distinct metabolites that calibrates host responses to diverse microbial signals.


Subject(s)
Gastrointestinal Microbiome/physiology , Histone Deacetylases/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Intestines/enzymology , Intestines/microbiology , Phytic Acid/metabolism , Animals , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/cytology , Intestines/pathology , Mice , Mice, Inbred C57BL , Organoids/enzymology , Organoids/metabolism , Organoids/pathology , Symbiosis
7.
Gastroenterology ; 163(5): 1377-1390.e11, 2022 11.
Article in English | MEDLINE | ID: mdl-35934064

ABSTRACT

BACKGROUND & AIMS: The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS: We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS: Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS: Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.


Subject(s)
Circadian Rhythm , Gastrointestinal Microbiome , Humans , Mice , Animals , Circadian Rhythm/physiology , Gastrointestinal Microbiome/physiology , Histone Deacetylases , Caco-2 Cells , ARNTL Transcription Factors , Propionates , Fatty Acids, Volatile/metabolism , Butyrates , Histone Deacetylase Inhibitors/pharmacology , Luciferases
8.
Nat Immunol ; 12(11): 1045-54, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21946417

ABSTRACT

Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.


Subject(s)
Homeostasis , Immunity, Innate , Influenza, Human/immunology , Lung/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Respiratory Mucosa/metabolism , Airway Remodeling/drug effects , Airway Remodeling/immunology , Amphiregulin , Animals , Antigens, CD/biosynthesis , Cells, Cultured , EGF Family of Proteins , Glycoproteins/pharmacology , Homeostasis/immunology , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Interleukin-33 , Interleukins/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Inbred C57BL , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Wound Healing
9.
Genes Immun ; 22(5-6): 237-246, 2021 10.
Article in English | MEDLINE | ID: mdl-33824498

ABSTRACT

The gastrointestinal tract harbors trillions of microbial species, collectively termed the microbiota, which establish a symbiotic relationship with the host. Decades of research have emphasized the necessity of microbial signals in the development, maturation, and function of host physiology. However, changes in the composition or containment of the microbiota have been linked to the development of several chronic inflammatory diseases, including inflammatory bowel diseases. Intestinal epithelial cells (IECs) are in constant contact with the microbiota and are critical for maintaining intestinal homeostasis. Signals from the microbiota are directly sensed by IECs and influence intestinal health by calibrating immune cell responses and fortifying intestinal barrier function. IECs detect commensal microbes through engagement of common pattern recognition receptors or by sensing the production of microbial-derived metabolites. Deficiencies in these microbial-detecting pathways in IECs leads to impaired epithelial barrier function and altered intestinal homeostasis. This Review aims to highlight the pathways by which IECs sense microbiota-derived signals and the necessity of these detection pathways in maintaining epithelial barrier integrity.


Subject(s)
Inflammatory Bowel Diseases , Microbiota , Homeostasis , Humans , Intestinal Mucosa , Intestines
10.
Immunity ; 37(1): 158-70, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22705104

ABSTRACT

Signals from commensal bacteria can influence immune cell development and susceptibility to infectious or inflammatory diseases. However, the mechanisms by which commensal bacteria regulate protective immunity after exposure to systemic pathogens remain poorly understood. Here, we demonstrate that antibiotic-treated (ABX) mice exhibit impaired innate and adaptive antiviral immune responses and substantially delayed viral clearance after exposure to systemic LCMV or mucosal influenza virus. Furthermore, ABX mice exhibited severe bronchiole epithelial degeneration and increased host mortality after influenza virus infection. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.


Subject(s)
Bacteria/immunology , Immunity, Innate , Viruses/immunology , Adaptive Immunity , Animals , Anti-Bacterial Agents/pharmacology , Arenaviridae Infections/genetics , Arenaviridae Infections/immunology , Bacteria/drug effects , Disease Susceptibility/immunology , Interferons/immunology , Lymphocytic choriomeningitis virus/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Orthomyxoviridae/immunology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology
11.
J Immunol ; 202(2): 598-607, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30530480

ABSTRACT

Regulation of the intestinal mucus layer by goblet cells is important for preventing inflammation and controlling infection. IL-33, a cytokine upregulated in inflammatory bowel disease and helminth infection, induces intestinal goblet cells, but the mechanism remains unclear. Enteroids are three-dimensional structures of primary small intestinal epithelial cells that contain all differentiated intestinal epithelial cell types. We developed an enteroid-immune cell coculture model to determine the mechanism through which IL-33 affects intestinal goblet cell differentiation. We report that IL-33 does not directly induce goblet cell differentiation in murine enteroids; however, IL-13, a cytokine induced by IL-33, markedly induces goblet cells and gene expression consistent with goblet cell differentiation. When enteroids are cocultured with CD90+ mesenteric lymph node cells from IL-33-treated mice, IL-33 then induces IL-13 secretion by group 2 innate lymphoid cells and enteroid gene expression consistent with goblet cell differentiation. In cocultures, IL-33-induced Muc2 expression is dependent on enteroid Il4ra expression, demonstrating a requirement for IL-13 signaling in epithelial cells. In vivo, IL-33-induced intestinal goblet cell hyperplasia is dependent on IL-13. These studies demonstrate that IL-33 induces intestinal goblet cell differentiation not through direct action on epithelial cells but indirectly through IL-13 production by goup 2 innate lymphoid cells.


Subject(s)
Cell Differentiation , Goblet Cells/immunology , Immunity, Innate , Interleukin-13/immunology , Interleukin-33/immunology , Lymphocytes/immunology , Animals , Coculture Techniques , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mucin-2/genetics , Mucin-2/immunology , Receptors, Cell Surface/genetics , Signal Transduction
12.
Gastroenterology ; 155(2): 501-513, 2018 08.
Article in English | MEDLINE | ID: mdl-29689264

ABSTRACT

BACKGROUND & AIMS: Intestinal microbiota modulate metabolism and associate closely with epithelial cells in the intestine. In intestinal epithelial cells (IECs), histone deacetylase 3 (HDAC3) integrates microbiota-derived signals to control intestinal homeostasis. We investigated whether HDAC3 in IECs regulates metabolism and the development of obesity in mice. METHODS: Adult C57BL/6 (control) mice and mice with constitutive or inducible IEC-specific disruption of Hdac3 (HDAC3ΔIEC mice) were placed on a standard chow or high-fat diet (HFD, 60% kcal from fat). We measured body composition, weight, glucose tolerance, and energy expenditure. IECs were isolated from small intestine and gene expression, and lipid levels were analyzed. HDAC3 levels were determined in 43 pediatric patient ileal biopsy samples and compared with body weight. RESULTS: Control mice fed an HFD gained weight, became obese, and had reduced glucose tolerance with increased serum insulin, whereas HFD-fed HDAC3ΔIEC mice did not develop obesity. Serum levels of triglycerides were reduced in HDAC3ΔIEC mice, and these mice had less liver fat and smaller adipocytes, compared with HFD-fed control mice. HDAC3ΔIEC mice had similar food intake and activity as control mice, but higher energy expenditure because of increased catabolism. IECs from HDAC3ΔIEC mice had altered expression levels of genes that regulate metabolism in response to the microbiota (such as Chka, Mttp, Apoa1, and Pck1) and accumulated triglycerides compared with IECs from control mice. The microbiota-derived short-chain fatty acid butyrate was decreased in obese mice. Butyrate significantly reduced the activity of HDAC3 and increased Pck1 expression in only control IECs. Administration of butyrate to control mice with diet-induced obesity, but not HDAC3ΔIEC mice, led to significant weight loss. Disruption of HDAC3 in IECs of mice after they became obese led to weight loss and improved metabolic profile. Levels of HDAC3 in intestinal biopsy samples correlated with patient weight. CONCLUSIONS: We found that epithelial HDAC3 promotes development of diet-induced obesity in studies of mice and that butyrate reduces activity of HDAC3 in IECs to prevent diet-induced obesity. This pathway might be manipulated to prevent or reduce obesity-associated disease.


Subject(s)
Diet, High-Fat/adverse effects , Epithelial Cells/metabolism , Gastrointestinal Microbiome/physiology , Histone Deacetylases/metabolism , Obesity/pathology , Animals , Biopsy , Body Weight/physiology , Child , Disease Models, Animal , Energy Metabolism , Female , Histone Deacetylases/genetics , Humans , Ileum/cytology , Ileum/microbiology , Ileum/pathology , Insulin Resistance , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/etiology , Obesity/physiopathology
13.
Nature ; 504(7478): 153-7, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24185009

ABSTRACT

The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(ΔIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(ΔIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(ΔIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(ΔIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.


Subject(s)
Gene Expression Regulation , Histone Deacetylases/metabolism , Homeostasis , Intestinal Mucosa/enzymology , Intestines/microbiology , Symbiosis , Adult , Animals , Bacteria/genetics , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Crohn Disease/enzymology , Crohn Disease/genetics , Crohn Disease/microbiology , Female , Gene Deletion , Gene Expression Profiling , Histone Deacetylases/genetics , Humans , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Paneth Cells/cytology , Paneth Cells/metabolism , RNA, Ribosomal, 16S/genetics , Signal Transduction
14.
Genes Dev ; 25(23): 2480-8, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22156208

ABSTRACT

Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.


Subject(s)
Epigenesis, Genetic , Histone Deacetylases/genetics , Macrophage Activation/genetics , Macrophages/metabolism , Animals , Histone Deacetylases/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Macrophages/immunology , Mice , Mice, Inbred Strains , Pneumonia/enzymology , Pneumonia/immunology , Pneumonia/parasitology , Schistosoma mansoni , Th2 Cells/immunology , Th2 Cells/metabolism
15.
Trends Immunol ; 35(11): 518-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25443494

ABSTRACT

The trillions of beneficial commensal microorganisms that normally reside in the gastrointestinal tract have emerged as a critical source of environmentally-derived stimuli that can impact health and disease. However, the underlying cellular and molecular mechanisms that recognize commensal bacteria-derived signals and regulate mammalian homeostasis are just beginning to be defined. Highly coordinated epigenomic modifications allow mammals to alter the transcriptional program of a cell in response to environmental cues. These modifications may play a key role in regulating the dynamic relationship between mammals and their microbiota. We review recent advances in understanding the interplay between the microbiota and mammalian epigenomic pathways, and highlight emerging findings that implicate a central role for histone deacetylases (HDACs) in orchestrating host-microbiota interactions.


Subject(s)
Epigenesis, Genetic , Epigenomics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Gene Expression Regulation , Microbiota , Animals , Blood Cells/metabolism , Cellular Microenvironment , Gene-Environment Interaction , Histone Deacetylases/metabolism , Homeostasis , Host-Pathogen Interactions , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology
16.
Toxicol Pathol ; 43(1): 101-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25330924

ABSTRACT

The mammalian gastrointestinal tract is home to trillions of commensal microorganisms that collectively make up the intestinal microbiota. These microbes are important environmental factors that regulate homeostasis, and alterations in the composition of the microbiota have been associated with several diseases, including inflammatory bowel disease, diabetes, and cancer. New research is beginning to uncover epigenomic pathways that may regulate this relationship with the microbiota. Epigenomic modifications alter the structure of the chromatin and therefore regulate the transcriptional program of a cell. These modifications are maintained by the dynamic activity of various modifying and demodifying enzymes, the activities of which can be influenced by metabolites and other environmental cues. Histone deacetylases (HDACs) are a class of epigenomic-modifying enzymes that are regulated by both endogenous and exogenous factors, and recent studies have suggested that host HDAC expression is important for regulating communication between the intestinal microbiota and mammalian host cells.


Subject(s)
Epigenomics/methods , Microbiota/genetics , Animals , Humans
17.
J Immunol ; 190(5): 2292-300, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23355735

ABSTRACT

Resistin-like molecule (RELM)α belongs to a family of secreted mammalian proteins that have putative immunomodulatory functions. Recent studies have identified a pathogenic role for RELMα in chemically induced colitis through effects on innate cell populations. However, whether RELMα regulates intestinal adaptive immunity to enteric pathogens is unknown. In this study, we employed Citrobacter rodentium as a physiologic model of pathogenic Escherichia coli-induced diarrheal disease, colitis, and Th17 cell responses. In response to Citrobacter, RELMα expression was induced in intestinal epithelial cells, infiltrating macrophages, and eosinophils of the infected colons. Citrobacter-infected RELMα(-/-) mice exhibited reduced infection-induced intestinal inflammation, characterized by decreased leukocyte recruitment to the colons and reduced immune cell activation compared with wild-type (WT) mice. Interestingly, Citrobacter colonization and clearance were unaffected in RELMα(-/-) mice, suggesting that the immune stimulatory effects of RELMα following Citrobacter infection were pathologic rather than host-protective. Furthermore, infected RELMα(-/-) mice exhibited decreased CD4(+) T cell expression of the proinflammatory cytokine IL-17A. To directly test whether RELMα promoted Citrobacter-induced intestinal inflammation via IL-17A, infected WT and IL-17A(-/-) mice were treated with rRELMα. RELMα treatment of Citrobacter-infected WT mice exacerbated intestinal inflammation and IL-17A expression whereas IL-17A(-/-) mice were protected from RELMα-induced intestinal inflammation. Finally, infected RELMα(-/-) mice exhibited reduced levels of serum IL-23p19 compared with WT mice, and RELMα(-/-) peritoneal macrophages showed deficient IL-23p19 induction. Taken together, these data identify a proinflammatory role for RELMα in bacterial-induced colitis and suggest that the IL-23/Th17 axis is a critical mediator of RELMα-induced inflammation.


Subject(s)
Citrobacter rodentium/immunology , Inflammation/immunology , Intercellular Signaling Peptides and Proteins/immunology , Interleukin-17/immunology , Intestines/drug effects , Macrophages, Peritoneal/drug effects , Th17 Cells/drug effects , Adaptive Immunity/drug effects , Animals , Citrobacter rodentium/pathogenicity , Dextran Sulfate , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/pathology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/pathology , Female , Gene Expression/drug effects , Inflammation/chemically induced , Inflammation/microbiology , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Interleukin-17/deficiency , Interleukin-17/genetics , Interleukin-23 Subunit p19/blood , Interleukin-23 Subunit p19/immunology , Intestines/immunology , Intestines/microbiology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Th17 Cells/immunology , Th17 Cells/pathology
18.
Nature ; 456(7224): 997-1000, 2008 Dec 18.
Article in English | MEDLINE | ID: mdl-19037247

ABSTRACT

Rhythmic changes in histone acetylation at circadian clock genes suggest that temporal modulation of gene expression is regulated by chromatin modifications. Furthermore, recent studies demonstrate a critical relationship between circadian and metabolic physiology. The nuclear receptor corepressor 1 (Ncor1) functions as an activating subunit for the chromatin modifying enzyme histone deacetylase 3 (Hdac3). Lack of Ncor1 is incompatible with life, and hence it is unknown whether Ncor1, and particularly its regulation of Hdac3, is critical for adult mammalian physiology. Here we show that specific, genetic disruption of the Ncor1-Hdac3 interaction in mice causes aberrant regulation of clock genes and results in abnormal circadian behaviour. These mice are also leaner and more insulin-sensitive owing to increased energy expenditure. Unexpectedly, loss of a functional Ncor1-Hdac3 complex in vivo does not lead to sustained increases in known catabolic genes, but instead significantly alters the oscillatory patterns of several metabolic genes, demonstrating that circadian regulation of metabolism is critical for normal energy balance. These findings indicate that activation of Hdac3 by Ncor1 is a nodal point in the epigenetic regulation of circadian and metabolic physiology.


Subject(s)
Circadian Rhythm/physiology , Histone Deacetylases/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , ARNTL Transcription Factors , Amino Acid Substitution , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Biological Clocks/genetics , Biological Clocks/physiology , Cells, Cultured , Circadian Rhythm/genetics , Diet , Energy Metabolism/genetics , Energy Metabolism/physiology , Female , Gene Expression Regulation , Histone Deacetylases/genetics , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Receptor Co-Repressor 1 , Obesity/enzymology , Obesity/genetics , Obesity/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics
19.
Mucosal Immunol ; 17(2): 303-313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428738

ABSTRACT

The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.


Subject(s)
Inflammatory Bowel Diseases , Microbiota , Animals , Humans , Intestines , Inflammatory Bowel Diseases/metabolism , Immune System , Intestinal Mucosa , Mammals
20.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645130

ABSTRACT

The immunological defects causing susceptibility to severe viral respiratory infections due to early-life dysbiosis remain ill-defined. Here, we show that influenza virus susceptibility in dysbiotic infant mice is caused by CD8+ T cell hyporesponsiveness and diminished persistence as tissue-resident memory cells. We describe a previously unknown role for nuclear factor interleukin 3 (NFIL3) in repression of memory differentiation of CD8+ T cells in dysbiotic mice involving epigenetic regulation of T cell factor 1 (TCF 1) expression. Pulmonary CD8+ T cells from dysbiotic human infants share these transcriptional signatures and functional phenotypes. Mechanistically, intestinal inosine was reduced in dysbiotic human infants and newborn mice, and inosine replacement reversed epigenetic dysregulation of Tcf7 and increased memory differentiation and responsiveness of pulmonary CD8+ T cells. Our data unveils new developmental layers controlling immune cell activation and identifies microbial metabolites that may be used therapeutically in the future to protect at-risk newborns.

SELECTION OF CITATIONS
SEARCH DETAIL