Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Phytother Res ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655878

ABSTRACT

Gout, or hyperuricemia is a multifactorial and multi-faceted metabolic disease that is quite difficult to manage and/or treat. Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) such as allopurinol, corticosteroids and colchicine amongst others, have helped in its management and treatment to some extent. This study aimed to compile and analyze the different herbal remedies used in the management of hyperuricemia and gout. A literature search was conducted from key databases (PubMed, ScienceDirect, Cochrane Library, Google Scholar) using relevant keywords via the PRISMA model. Smilax riparia A.DC. from Traditional Chinese Medicine is used in many countries for its therapeutic effect on lowering serum urate levels. No single study was able to establish the efficacy of a specific traditionally used herb via in vitro, in vivo, and clinical studies. Patients were found to use a panoply of natural remedies, mainly plants to treat hyperuricemia and gout, which have been validated to some extent by in vitro, in vivo, and clinical studies. Nonetheless, further research is needed to better understand the ethnopharmacological relationship of such herbal remedies.

2.
Nitric Oxide ; 130: 1-11, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36375788

ABSTRACT

Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Nitric Oxide/pharmacology , Microglia , Neuroglia , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Inflammation/drug therapy , Inflammation/prevention & control
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958641

ABSTRACT

Khat (Catha edulis) is an evergreen shrub whose buds and leaves give a state of delight and euphoria when chewed. Cathinone, an amphetamine-like stimulant that is among the active ingredients in khat, is able to downregulate glutamate transporter subtype I (GLT-1). Neurobehavioral dysfunctions such as altered locomotor activity, anorexia, and nociception have been observed in animals exposed to cathinone. Interestingly, treatment with a ß-lactam antibiotic such as ceftriaxone, which upregulates GLT-1, normalizes cathinone-induced conditioned place preference, and alters repetitive movements in rats. However, little is known about the role of the glutamatergic system in memory dysfunction and anxiety-like behaviors in mice exposed to khat. We found here that clavulanic acid, a ß-lactam-containing compound and GLT-1 upregulator, would modulate the neurobehavioral changes, including memory impairment and anxiety-like behaviors, associated with repeated exposure of mice to khat. Our data supported that clavulanic acid could improve memory impairment and anxiety-like behaviors through upregulating GLT-1 in the nucleus accumbens (NAc), an effect abolished with a selective GLT-1 blocker. This upregulation was associated with restored glutamate/cystine antiporter expression in the NAc using a Western blotting assay. Cathine and cathinone were identified in khat extract using the gas chromatography technique. Our work provides preclinical insight into the efficacy of ß-lactam-containing compounds for the attenuation of neurobehavioral changes induced by khat exposure.


Subject(s)
Catha , Nucleus Accumbens , Mice , Rats , Animals , Clavulanic Acid/pharmacology , Nucleus Accumbens/metabolism , Anxiety/chemically induced , Anxiety/drug therapy , Memory Disorders/metabolism , Amphetamine/metabolism
4.
Medicina (Kaunas) ; 59(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37512069

ABSTRACT

Recent studies have highlighted the necessity to thoroughly evaluate medicinal plants due to their therapeutic potential. The current study delves into the phytochemical profile, antioxidant capacity, and hepatoprotective effect of Andrographis paniculata. The investigation specifically targets its effectiveness in mitigating liver dysfunction induced by carbon tetrachloride (CCl4) in Wistar albino rats, aiming to uncover its promising role as a natural remedy for liver-related ailments. A. paniculata leaf extract was screened for phytoconstituents and antioxidant and hepatoprotective effects in Wistar albino rats against CCl4-induced liver dysfunction. Phytochemical analysis revealed the presence of flavonoids, alkaloids, and phenolic compounds in all extracts. The phenolic concentration ranged from 10.23 to 19.52 mg gallic acid per gram of the sample, while the highest flavonoid concentration was found in the ethanol fraction (8.27 mg rutin equivalents per gram). The antioxidant activity varied from 10.23 to 62.23. GC-MS analysis identified several phytochemicals including octadecanoic acid, stigmasterol, phenanthrenecarboxylic acid, and others. Effects of the ethanol extract of A. paniculata were evaluated in four groups of animals. Biochemical estimations of serum glutamine oxaloacetate transaminase, serum glutamine pyruvate transaminase, and serum bilirubin were significantly higher (p < 0.05) in the CCl4-treated group. Treatment with 300 mg/kg b.w. of the ethanol extract of A. paniculata significantly (p < 0.05) decreased these serum enzymes. Lipid peroxidation levels in carbon tetrachloride-treated animals showed a substantial (p < 0.05) rise when compared to untreated animals, while the lipid peroxidation levels were considerably (p < 0.05) reduced after treatment with ethanol extract at 300 mg/kg b.w. Liver biochemical catalase activities were significantly reduced in the carbon tetrachloride-treated animals. The results of this study conclusively demonstrate that A. paniculata extracts are a rich source of phytochemicals and possess significant antioxidant, free radical scavenging, and hepatoprotective properties.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Andrographis paniculata , Rats, Wistar , Carbon Tetrachloride , Glutamine/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Liver , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Phenols/therapeutic use , Phenols/analysis , Transaminases/pharmacology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
5.
Saudi Pharm J ; 31(5): 752-764, 2023 May.
Article in English | MEDLINE | ID: mdl-37181145

ABSTRACT

The purpose of immunization is the effective cellular and humoral immune response against antigens. Several studies on novel vaccine delivery approaches such as micro-particles, liposomes & nanoparticles, etc. against infectious diseases have been investigated so far. In contrast to the conventional approaches in vaccine development, a virosomes-based vaccine represents the next generation in the field of immunization because of its balance between efficacy and tolerability by virtue of its mechanism of immune instigation. The versatility of virosomes as a vaccine adjuvant, and delivery vehicle of molecules of different nature, such as peptides, nucleic acids, and proteins, as well as provide an insight into the prospect of drug targeting using virosomes. This article focuses on the basics of virosomes, structure, composition formulation and development, advantages, interplay with the immune system, current clinical status, different patents highlighting the applications of virosomes and their status, recent advances, and research associated with virosomes, the efficacy, safety, and tolerability of virosomes based vaccines and the future prospective.

6.
Drug Dev Ind Pharm ; 48(10): 552-565, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36269296

ABSTRACT

Saudi Arabia has a rich culture of folk medicines and three such common herbs used by Saudi people for therapy of breast cancer are Turmeric (Kurkum) Curcuma longa, Chamomile (Babunaj) Matricaria chamomilla, and Aswaghantha (Aswaghadh) Withania somnifera. Hence, the present study aims to develop a polyherbal phytosome formulation by thin film hydration technique with a synergistic anti-cancer effect for the treatment of breast cancer. The phytosomes were standardized for their phytoconstituents by HPTLC and showed the best optimal properties with a mean vesicle diameter of less than 200 nm, zeta potential in the range of -24.43 to -35.70 mV, and relatively integrated structure with fairly uniform size on TEM. The in vitro MTT assay on MCF-7 breast cancer cell lines and MDA MB 231 breast adenocarcinoma cell lines was carried out. MTT assay on MCF-7 breast cancer cell lines indicated that plant extract-loaded phytosomes exhibited enhanced cytotoxic effects at IC50 values. of 55, 50, 45, 52, 42, 44, and 20 µg/mL compared to the extracts of C. longa, M. chamomilla, W. somnifera, and their combined extracts (80, 82, 74, 60, 70, 60, and 35 µg/mL respectively). Moreover, intracellular reactive oxygen species production was found to be higher for phytosomes treated cells at respective IC50 concentrations when compared to extracts. Overall, the developed polyherbal phytosomes were found to be effective and afford synergistic effects for breast cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Early Detection of Cancer , Plant Extracts/pharmacology , Plant Extracts/chemistry , MCF-7 Cells , Antineoplastic Agents/chemistry
7.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628545

ABSTRACT

Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.


Subject(s)
Cannabinoids , Endocannabinoids , Cannabinoid Receptor Modulators/metabolism , Endocannabinoids/metabolism , Humans , Receptors, Cannabinoid/metabolism , Receptors, G-Protein-Coupled/metabolism
8.
Int J Mol Sci ; 23(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35562956

ABSTRACT

Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.


Subject(s)
Neuropeptides , Parkinson Disease , Dopaminergic Neurons/metabolism , Humans , Inflammation/pathology , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Neuroprotection , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
9.
Molecules ; 27(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35056662

ABSTRACT

Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher's opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.


Subject(s)
Biological Products/chemistry , Biological Products/therapeutic use , Drug Design , Drug Development , Drug Discovery , Plants/chemistry , Humans
10.
Molecules ; 27(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35630658

ABSTRACT

This study was aimed to perform the mechanistic investigations of chalcone scaffold as inhibitors of acetylcholinesterase (AChE) enzyme using molecular docking and molecular dynamics simulation tools. Basic chalcones (C1-C5) were synthesized and their in vitro AChE inhibition was tested. Binding interactions were studied using AutoDock and Surflex-Dock programs, whereas the molecular dynamics simulation studies were performed to check the stability of the ligand-protein complex. Good AChE inhibition (IC50 = 22 ± 2.8 to 37.6 ± 0.75 µM) in correlation with the in silico results (binding energies = -8.55 to -8.14 Kcal/mol) were obtained. The mechanistic studies showed that all of the functionalities present in the chalcone scaffold were involved in binding with the amino acid residues at the binding site through hydrogen bonding, π-π, π-cation, π-sigma, and hydrophobic interactions. Molecular dynamics simulation studies showed the formation of stable complex between the AChE enzyme and C4 ligand.


Subject(s)
Chalcone , Chalcones , Acetylcholinesterase/metabolism , Chalcones/chemistry , Cholinesterase Inhibitors/chemistry , Ligands , Molecular Docking Simulation
11.
Inflammopharmacology ; 30(5): 1555-1567, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029362

ABSTRACT

A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.


Subject(s)
Arthritis, Rheumatoid , Endothelin-1 , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cytokines , Endothelial Cells , Endothelin-1/metabolism , Endothelins/metabolism , Humans , Reactive Oxygen Species , Superoxides , Vasoconstrictor Agents/therapeutic use
12.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144491

ABSTRACT

Since ancient times, Chrysopogon zizanioides has been utilized as a traditional medicinal plant for the treatment of numerous ailments, but neither its plant extract form nor its phytoconstituents have been fully explored. With this in mind, the present research was designed to isolate and structurally characterize one of its chemical constituents and evaluate its cytotoxic potential. Therefore, an ethanolic extract of roots was prepared and subjected to column chromatography using solvents of varying polarities. The obtained pure compound was characterized using various chromatographic and spectroscopic techniques such as high-performance liquid chromatography (HPLC), carbon and proton nuclear magnetic resonance (NMR), and liquid chromatography-mass spectroscopy (LC-MS) and identified as longifolene. This compound was evaluated for its cytotoxic potential using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the prostate (DU-145), oral (SCC-29B) cancer cell line and normal kidney cell line (Vero cells), taking doxorubicin as a standard drug. The obtained outcomes revealed that longifolene possesses cytotoxic potential against both prostate (IC50 = 78.64 µg/mL) as well as oral (IC50 = 88.92 µg/mL) cancer cell lines with the least toxicity in healthy Vero cells (IC50 = 246.3 µg/mL) when compared to doxorubicin. Hence, this primary exploratory study of longifolene exhibited its cytotoxic potency along with wide safety margins in healthy cell lines, giving an idea that the compounds possess some ability to differentiate between cancerous cells and healthy cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Chrysopogon , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Carbon , Chlorocebus aethiops , Doxorubicin , Male , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protons , Sesquiterpenes , Solvents/chemistry , Vero Cells
13.
Molecules ; 27(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144587

ABSTRACT

The main characteristic feature of diabetes mellitus is the disturbance of carbohydrate, lipid, and protein metabolism, which results in insulin insufficiency and can also lead to insulin resistance. Both the acute and chronic diabetic cases are increasing at an exponential rate, which is also flagged by the World Health Organization (WHO) and the International Diabetes Federation (IDF). Treatment of diabetes mellitus with synthetic drugs often fails to provide desired results and limits its use to symptomatic treatment only. This has resulted in the exploration of alternative medicine, of which herbal treatment is gaining popularity these days. Owing to their safety benefits, treatment compliance, and ability to exhibit effects without disturbing internal homeostasis, research in the field of herbal and ayurvedic treatments has gained importance. Medicinal phytoconstituents include micronutrients, amino acids, proteins, mucilage, critical oils, triterpenoids, saponins, carotenoids, alkaloids, flavonoids, phenolic acids, tannins, and coumarins, which play a dynamic function in the prevention and treatment of diabetes mellitus. Alkaloids found in medicinal plants represent an intriguing potential for the inception of novel approaches to diabetes mellitus therapies. Thus, this review article highlights detailed information on alkaloidal phytoconstituents, which includes sources and structures of alkaloids along with the associated mechanism involved in the management of diabetes mellitus. From the available literature and data presented, it can be concluded that these compounds hold tremendous potential for use as monotherapies or in combination with current treatments, which can result in the development of better efficacy and safety profiles.


Subject(s)
Alkaloids , Diabetes Mellitus , Saponins , Synthetic Drugs , Triterpenes , Alkaloids/therapeutic use , Amino Acids/therapeutic use , Carbohydrates , Carotenoids/therapeutic use , Coumarins/therapeutic use , Diabetes Mellitus/drug therapy , Flavonoids/therapeutic use , Humans , Insulin/therapeutic use , Lipids/therapeutic use , Micronutrients/therapeutic use , Oils/therapeutic use , Phytotherapy , Saponins/therapeutic use , Synthetic Drugs/therapeutic use , Tannins/therapeutic use , Triterpenes/therapeutic use
14.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684298

ABSTRACT

Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer's disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases-AChE and butyrylcholinesterase (BChE)-noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/chemistry , Calcium Channels , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Rabbits
15.
Saudi Pharm J ; 30(3): 237-244, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35498225

ABSTRACT

Khat consumers might use a number of drugs for underlying conditions; however the potential drug-herb interaction between khat and other drugs including Irbesartan (IRB) is unknown. The present study was conducted to evaluate the effects of khat chewing on pharmacokinetic profile of IRB, a commonly available antihypertensive agent. The pharmacokinetic profile of orally administered IRB (15.5 mg/kg) with and without pre-administration of khat (12.4 mg/kg) were determined in Sprague-Dawley rats. IRB was estimated in rat plasma samples using a newly developed HPLC method. The chromatographic separation of the drug and internal standard (IS) was performed on a C-18 column (Raptor C-18, 100 mm × 4.6 mm id.; 5 µm) using a mobile phase consisting of 10 mM ammonium acetate buffer (pH 4.0) and acetonitrile in a ratio 60:40 v/v. Acceptable linearity for IRB was recorded at 1 - 12 µg/mL concentration range (R2 > 0.99). Intra-day and inter-day precision (%RSD = 0.44% - 3.27% and 0.39-1.98% respectively) and accuracy (% recovery = 98.3 - 104.3%) in rat plasma was within the acceptable limit according to USFDA guidelines. The AUC0-t was found to be significantly increased in IRB-khat co-administered rats as compared to rats receiving IRB only; whereas, the Tmax (0.5 h) value remained unchanged. Results of this study revealed that the IRB level considerably increased in rat plasma upon co-administration of khat. This might be due to the inhibition of CYP2D9 by khat which is the principal cytochrome P450 isoform responsible for IRB metabolism.

16.
Phytother Res ; 35(10): 5440-5458, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34184327

ABSTRACT

Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.


Subject(s)
Antioxidants , Isothiocyanates , Anti-Inflammatory Agents , Antioxidants/pharmacology , Dietary Supplements , Humans , Sulfoxides
17.
Drug Chem Toxicol ; 44(2): 124-129, 2021 Mar.
Article in English | MEDLINE | ID: mdl-30871384

ABSTRACT

Shammah is a traditional form of smokeless tobacco (ST) that is manufactured and used locally by people of Middle East with highest usage in Saudi Arabia, Yemen and Sudan. In Saudi Arabia, shammah comes in three variants: white, brown and yellow. In the present study, we investigated the genotoxicity of yellow shammah (YS) on bone marrow (BM) cells in vivo using mice. Bone marrow (BM) chromosomal aberration (CA) and micronucleus (MN) assay were performed and hepatic markers of oxidative stress were determined. Swiss albino mice were divided into five groups (n = 6) including negative control (NC) and positive control (PC) groups. The three treated groups included YS-100, 200 and 300 mg/kg, doses freshly prepared in 0.5% carboxymethyl cellulose (CMC) and administered orally once a day for 2 weeks. PC animals were administered cyclophosphamide (CP) at a dose of 40 mg/kg body weight, 24 h before termination. Two weeks continuous treatment of YS induced a dose dependent and significant increase in aberrant metaphases (AM), CA per cell and depression in mitotic activity. In micronucleus assay, YS treatment increased the percentage of micronucleated polychromatic erythrocytes (MNPCE) frequency and showed statistically significant reduction in polychromatic erythrocyte/normochromatic erythrocyte ratio at all doses, as compared to NC. YS also markedly inhibited the activities of superoxide dismutase, reduced glutathione and increased malondialdehyde content. CP was used as clastogen (positive control) and yielded the expected positive results. Therefore, it may be concluded that YS has genotoxic and cytotoxic effects for BM cells of mice in vivo.


Subject(s)
Bone Marrow Cells/drug effects , Chromosome Aberrations/drug effects , Tobacco, Smokeless/toxicity , Animals , Cyclophosphamide/toxicity , Dose-Response Relationship, Drug , Glutathione/metabolism , Malondialdehyde/metabolism , Mice , Micronucleus Tests/methods , Middle East , Mutagenicity Tests , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism
18.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105694

ABSTRACT

Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
19.
Medicina (Kaunas) ; 56(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414190

ABSTRACT

Background and Objectives: Khat chewing is considered as a daily habit that is practiced by more than five million people globally. The effect of khat chewing on the surface roughness and the color stability of natural teeth and the material used in the fabrication of dental prosthesis remains unknown. This study was conducted to explore and compare the effect of khat homogenate (KH) on the surface roughness (Ra) and the average color changes (ΔE*) amongst natural teeth and selected shades from different porcelain types, namely, feldspathic metal ceramic (MC) VM13, computer-aided design/computer assisted manufacture (CAD/CAM) feldspathic (Vitablocs Mark II), and multilayer zirconia (Ceramill Zolid PS) porcelains. Materials and Methods: Seventy samples were prepared from natural teeth, feldspathic MC, CAD/CAM Vitablocs Mark II, and zirconia porcelain. The Ra values were measured using a profilometer and expressed in micrometers, whereas the ΔE* values were measured using VITA Easyshade® V spectrophotometer for all samples before and after frequent immersion and thermocycling in KH for 30 days. The surface topography was used to assess the materials surfaces (glazed or polished) after KH immersion by using a white light interferometry machine. Results: Results revealed that the Ra and the ΔE* values of the different types of tested porcelain were influenced by KH. The order of surface roughness values was glazed or polished MC > polished Zircon > polished Vitablocs Mark II > natural teeth. The lowest ΔE* values were recorded for glazed Vitablocs Mark II and MC, and the values could be arranged as polished zircon > natural teeth > glazed zircon > polished MC > polished Vitablocs Mark II. P values were significantly varied (< 0.001) among all the tested groups, except the zircon group (>0.05) for both Ra and ΔE*. Conclusion: KH significantly affected both surface parameter and color of glazed or polished porcelain materials and natural teeth.


Subject(s)
Catha/adverse effects , Dental Enamel/drug effects , Dental Porcelain , Color , Humans
20.
Saudi Pharm J ; 28(4): 480-486, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273808

ABSTRACT

This study was aimed to assess the genotoxicity of brown shammah (BS), a local form of smokeless tobacco, popular in Middle East countries including Yemen, Saudi Arabia and Sudan. The genotoxicity was explored using in vivo chromosomal aberration (CA), micronucleus (MN) and sperm abnormality (SA) assays. In addition, oxidative stress was also determined using various hepatic markers. Swiss albino mice were selected for the study, which were divided in to 5 groups of six animals each. They include, negative control (NC, received only vehicle) as well as positive control group (PC, received vehicle for 2 weeks followed by administration of cyclophosphamide, CP). Depending upon their dose, three BS treated animal groups were BS-100, 300 and 900 mg/kg. Doses of BS were obtained by suspending BS in 0.5% CMC (carboxy methyl cellulose) and orally administered once a day for 2 weeks. Significant augmentation of the average percentage of aberrant metaphase (AM), CA per cells and suppressed mitotic activity was observed on post administration of BS. In addition, BS increased the occurrence of MNPCEs (micronucleated polychromatic erythrocytes) formation, induced cytotoxicity and increased percentage of abnormal sperms as compared to NC. Moreover, BS also induced oxidative stress as the activities of hepatic superoxide dismutase (SOD) and glutathione (GSH) were reduced and malondialdehyde (MDA) content were increased by BS. Cyclophosphamide was utilized as clastogen, showed anticipated positive results and confirmed the sensitivity of test system. Therefore, it may be deduced from the study that the BS possesses genotoxic effects on mice bone marrow and germ cells in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL