Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Publication year range
1.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575856

ABSTRACT

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Subject(s)
Antioxidants , Ascorbic Acid , Antioxidants/metabolism , Chlorophyll A , Lipid Peroxidation , Pisum sativum , Reactive Oxygen Species , Salt Stress , Sodium Chloride/pharmacology
2.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926637

ABSTRACT

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Subject(s)
Brassica napus , Salicylic Acid , Salt Stress , Brassica napus/drug effects , Brassica napus/growth & development , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Salt Stress/drug effects , Chlorophyll/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Sodium Chloride/pharmacology , Antioxidants/metabolism
3.
Int J Phytoremediation ; 26(6): 816-837, 2024.
Article in English | MEDLINE | ID: mdl-37994831

ABSTRACT

Glyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations. Still, the complete resistance of Gly indicates that chelation of metal cations does not play a role in herbicidal efficacy or have a substantial impact on mineral nutrition. Due to its extensive and inadequate use, this herbicide has been frequently detected in soil (2 mg kg-1, European Union) and in stream water (328 µg L-1, USA), mostly in surface (7.6 µg L-1, USA) and groundwater (2.5 µg L-1, Denmark). International Agency for Research on Cancer (IARC) already classified Gly as a category 2 A carcinogen in 2016. Therefore, it is necessary to find the best degradation techniques to remediate soil and aquatic environments polluted with Gly. This review elucidates the effects of Gly on humans, soil microbiota, plants, algae, and water. This review develops deeper insight toward the advances in Gly biodegradation using microbial communities. This review provides a thorough understanding of Gly interaction with mineral elements and its limitations by interfering with the plants biochemical and morphological attributes.


Glyphosate (Gly) contamination in water, soil, and crops is an eminent threat globally. Various advanced and integrated approaches have been reported to remediate Gly contamination from the water-soil-crop system. This review elucidates the effects of Gly on human health, soil microbial communities, plants, algae, and water. This review develops deeper insight into the advances in Gly biodegradation using microbial communities, particularly soil microbiota. This review provides a brief understanding of Gly interaction with mineral elements and its limitations in interfering with the plants biochemical and morphological attributes.


Subject(s)
Herbicides , Microbiota , Humans , Glyphosate , Soil , Glycine/metabolism , Biodegradation, Environmental , Herbicides/metabolism , Cations , Minerals
4.
Int J Phytoremediation ; 26(9): 1474-1485, 2024.
Article in English | MEDLINE | ID: mdl-38488053

ABSTRACT

Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.


Combined effect of PGPR and nanotechnology in the bioremediation of toxic contaminants is well reported in literature. Most of these reports comprise the use of hyperaccumulator plants for phytoextraction of heavy metals. However, phytostabilization potential of hyperaccumulators is still un-explored. Current study investigated the role of PGPR and Fe-NPs in suppressing the uptake of Cr in aloe vera, a hyperaccumulator plant.


Subject(s)
Aloe , Biodegradation, Environmental , Chromium , Iron , Pseudomonas aeruginosa , Soil Pollutants , Chromium/metabolism , Iron/metabolism , Soil Pollutants/metabolism , Pseudomonas aeruginosa/physiology
5.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1028-1037, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467582

ABSTRACT

Biochar, an organic carbonaceous matter, is a unique feed additive that is now being used in aquaculture industry to formulate a cost-effective and eco-friendly diet. This experiment (in door) was conducted over course of 90 days to determine the most effective form of biochar, produced from various sources, for supplementation in Moringa oleifera seed meal-based diet. These sources were: farmyard manure biochar, parthenium biochar (PB), vegetable waste biochar, poultry waste biochar (PWB) and corncob waste biochar, added at 2 g/kg concentration to determine the effect of supplementation on the growth indices, nutrient absorption, carcass composition, haematology and mineral status of Labeo rohita (rohu) fingerlings. The research design consisted of six test diets with three replications (6 × 3) of each. Total of 270 fingerlings (6.30 ± 0.020 g) were fed at 5% body weight and 15 of them were kept in separate steel tanks. The results indicated that PWB was most effective in improving weight gain (285.58 ± 4.54%) and feed conversion ratio (1.060 ± 0.040) compared to control diet and other test diets. The same type of biochar (PWB) produced the best results for nutrient digestibility, that is, crude protein, crude fat and gross energy and carcass composition. In terms of haematology and mineral status, PWB showed the best results. In conclusion, it was found that PWB significantly enhanced (p < 0.05) L. rohita fingerling's growth, carcass composition, nutrient digestibility, haematological parameters (red blood cells, white blood cells, platelets and haemoglobin) and mineral composition (Ca, Na, P, Mg, Fe, Mn, Zn, K and Cu) whereas PB negatively affected all parameters. It is anticipated that the potential use of biochar will increase in aquaculture industry, as research on its incorporation in fish feeds is still limited.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Body Composition , Charcoal , Cyprinidae , Diet , Minerals , Animals , Charcoal/chemistry , Charcoal/pharmacology , Charcoal/administration & dosage , Animal Feed/analysis , Diet/veterinary , Body Composition/drug effects , Minerals/administration & dosage , Cyprinidae/growth & development , Cyprinidae/physiology
6.
J Med Virol ; 95(3): e28604, 2023 03.
Article in English | MEDLINE | ID: mdl-36815488

ABSTRACT

Pakistan is an endemic country for Crimean-Congo hemorrhagic fever (CCHF) and its Balochistan province is considered a hotspot region for circulation of the virus whereas sporadic cases have been reported from other parts of the country. Our study aims to investigate the genomic diversity of the CCHF virus circulating in Punjab and Khyber Pakhtunkhwa provinces of Pakistan. Between April to September 2022, 46 samples from suspected CCHF patients were tested, with 6 (13%) showing positive RT-PCR results. Among the positive cases, all were male, aged 14-48 years among which 4 were butchers. Three CCHF patients succumbed to the disease. The complete S-M-L-gene fragments of 4 positive samples were sequenced. The S and L segments belonged to the Asia-1 clade and clustered with regional strains from Iran, India, and Afghanistan. One M segment sequence grouped into Africa-2 along with those reported from India during 2016-2019. We report the detection of a reassorted virus (NIH-PAK-CCHF-03|2022) having Asia-1-Africa-2-Asia-1 (S-M-L) segment pattern for the first time from Pakistan. Mutational analysis showed M segments harboring eight mutations (T55A, S80P, T110I, T185A, T189A, A212T, and N239I/T) in the mucin-like domain, five mutations (D250N, T333S, I375V, M401I, A433T), four mutations (N545D, Y657F, K688R, and I824V) in GP38-domain, and three mutations (T1418N, A1431V, and G1449S) in Gc-domain. These findings highlight the significance of whole-genome sequencing of indigenous strains for a better understanding of the CCHFV evolution in Pakistan.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Humans , Male , Female , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/epidemiology , Pakistan/epidemiology , Mutation , Genomics , Phylogeny
7.
J Med Virol ; 95(8): e29037, 2023 08.
Article in English | MEDLINE | ID: mdl-37587900

ABSTRACT

The global mpox outbreak spanning 2022-2023 has affected numerous countries worldwide. In this study, we present the first report on the detection, whole-genome sequence, and coinfection of the mpox virus and varicella zoster virus (VZV) from Pakistan. During April-May 2023, samples from 20 suspected cases of mpox were tested at the National Institutes of Health, Islamabad among which 4 tested positive. All four cases had a travel history of Saudi Arabia. All the suspected samples were processed by using a Zymo research kit for DNA extraction, followed by qRT-PCR amplification by using a DaAn Gene detection kit for the mpox virus. Further, two of the positive samples with a low Ct value (<20) were subjected to whole-genome sequencing using a metagenomic approach on the iSeq (Illumina) platform. The sequencing results revealed Clade IIb and genotype A.2.1 of MPXV, which clustered with viruses from Slovenia and the UK in July and June 2022, respectively. Our analysis identified two novel nonsynonymous substitutions in mpox virus, namely V98I in OPG046 and P600S in OPG109. Furthermore, we successfully retrieved the complete genome of VZV from the same sample, belonging to Clade 5. This study represents the first positive case of MPXV in Pakistan and the coinfection of mpox and VZV by using a metagenome approach providing insights into their complete genomes. Our results highlight the importance of surveillance at the point of entries, strengthening lab capacities including next-generation sequencing, and using differential diagnosis for timely and accurate detection of mpox cases.


Subject(s)
Chickenpox , Coinfection , Herpes Zoster , Mpox (monkeypox) , Varicella Zoster Virus Infection , Humans , Chickenpox/diagnosis , Coinfection/diagnosis , Genomics , Herpes Zoster/diagnosis , High-Throughput Nucleotide Sequencing , Pakistan , United States
8.
Genet Sel Evol ; 55(1): 91, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097935

ABSTRACT

BACKGROUND: The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS: We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS: To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.


Subject(s)
Genome , Genomics , Animals , Cattle/genetics , Hybridization, Genetic , Gene Flow , Polymorphism, Single Nucleotide
9.
Ecotoxicol Environ Saf ; 268: 115701, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979354

ABSTRACT

Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.


Subject(s)
Nanoparticles , Soil Pollutants , Humans , Triticum , Cadmium/analysis , Copper/pharmacology , Soil Pollutants/analysis , Nanoparticles/chemistry , Soil/chemistry , Oxides/pharmacology
10.
Environ Geochem Health ; 45(7): 5231-5244, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37097602

ABSTRACT

Although irrigation water is a fundamental need for plant growth, it is also a source of pollutants if contaminated with harmful materials like cadmium (Cd). Irrigation water possessing abundant Cd causes damage to soil, plants, animals and ultimately human beings through the food chain. A pot experiment was conducted to evaluate the gladiolus (Gladiolus grandiflora L.) potential of Cd accumulation and the capability of the plant to be an economically beneficial choice in presence of high Cd irrigation water supply. Artificially prepared four levels of Cd irrigation water were applied to the plants viz., 30, 60, 90 and 120 mg L-1. The results revealed that 30 mg L-1 Cd had no difference in all growth-related parameters when compared to the control. Photosynthesis rate, stomatal conductance and transpiration rate along with plant height and spike length were reduced with high accumulation levels of Cd in plants. The main plant portion for Cd storage found in Gladiolus grandiflora L was corm where the amount of Cd was 10-12 times higher than the amount found in leaves, and 2-4 times more than the stem. This deportment was further established by the translocation factor (TF). In corm to shoot TF and corm to stem TF, the factor reduced with increasing Cd levels, while, in corm to leaves TF, Cd levels were statistically non-significant. From corm to shoot TF value of 0.68 and 0.43 in case of 30 and 60 mg L-1, Cd treatments indicates good phytoremediation potential of Gladiolus in low and moderate Cd-polluted environments. Conclusively, the study reveals the good capability of Gladiolus grandiflora L. to harvest Cd from the soil and water in reasonably good amount with sufficient potential to grow under irrigation-based Cd stress. Under revelations of the study, Gladiolus grandiflora L appeared as a Cd accumulator which could potentially be used as a sustainable approach for phytoremediation of Cd.


Subject(s)
Cadmium , Soil Pollutants , Humans , Cadmium/toxicity , Cadmium/analysis , Biodegradation, Environmental , Soil Pollutants/toxicity , Soil Pollutants/analysis , Water , Soil , Plant Roots/chemistry
11.
J Med Virol ; 94(10): 4869-4877, 2022 10.
Article in English | MEDLINE | ID: mdl-35754094

ABSTRACT

The emergence of different variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in upsurges of coronavirus disease 2019 (COVID-19) cases around the globe. Pakistan faced the fourth wave of COVID-19 from July to August 2021 with 314,786 cases. To understand the genomic diversity of circulating SARS-CoV-2 strains during the fourth wave of the pandemic in Pakistan, this study was conducted. The samples from 140 COVID-19-positive patients were subjected to whole-genome sequencing using the iSeq Sequencer by Illumina. The results showed that 97% (n = 136) of isolates belonged to the delta variant while three isolates belonged to alpha and only one isolate belonged to the beta variant. Among delta variant cases, 20.5% (n = 28) isolates were showing B.1.617.2 while 23.5% (n = 25), 17.59% (n = 19), 14.81% (n = 16), and 13.89% (n = 15) of isolates were showing AY.108, AY.43 AY.127, and AY.125 lineages, respectively. Islamabad was found to be the most affected city with 65% (n = 89) of delta variant cases, followed by Karachi (17%, n = 23), and Rawalpindi (10%, n = 14). Apart from the characteristic spike mutations (T19R, L452R, T478K, P681R, and D950N) of the delta variant, the sublineages exhibited other spike mutations as E156del, G142D, T95I, A222V, G446V, K529N, N532S, Q613H, and V483A. The phylogenetic analysis revealed the introductions from Singapore, the United Kingdom, and Germany. This study highlights the circulation of delta variants (B.1.617.2 and sublineages) during the fourth wave of pandemic in Pakistan.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Mutation , Pakistan/epidemiology , Pandemics , Phylogeny , SARS-CoV-2/genetics
12.
J Med Virol ; 94(3): 1115-1129, 2022 03.
Article in English | MEDLINE | ID: mdl-34726786

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) have emerged worldwide and gained significant importance due to their high transmissibility and global spread, thus meriting close monitoring. In Pakistan, limited information is available on circulation of these variants as the alpha variant has been reported the main circulating lineage. The current study was designed to detect and explore the genomic diversity of SARS-CoV-2 lineages circulating during the third wave of the pandemic in the indigenous population. From May 01 to June 09, 2021, a total of 16 689 samples were tested using TaqPath™ COVID-19 kit for the presence of SARS-CoV-2. Overall, 2562 samples (15.4%) were COVID-19 positive. Out of these positive samples, 2124 (12.7%) did not show the spike gene amplification (spike gene target failure ([SGTF]), whereas 438 (2.6%) showed spike gene amplification (non-SGTF). A subset (n = 58/438) of non-SGTF samples were randomly selected for whole-genome sequencing. Among VOCs, 45% (n = 26/58) were delta, 46% (n = 27/58) were beta, and one was gamma variant. The delta variant cases were reported mainly from Islamabad (n = 15; 58%) followed by Rawalpindi and Azad Kashmir (n = 1; 4% each). Beta variant cases originated mainly from Karachi (n = 8; 30%) and Islamabad (n = 11; 41%) and the gamma variant case was reported in a traveler from Italy. The delta, beta, and gamma variants possessed lineage-specific spike mutations. Notably, two rare mutations (E484Q and L5F) were found in the delta variant. Furthermore, in the beta variant, two significant rare non-synonymous spike mutations (A879S and K444R) were also reported. High prevalence of beta and delta variants in local population may increase the number of cases in the near future and provides an early warning to national health authorities to take timely decisions and devise suitable interventions to contain a possible fourth wave.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Genomics , Humans , Pakistan/epidemiology , SARS-CoV-2/genetics
13.
Appl Microbiol Biotechnol ; 106(21): 7187-7207, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36173452

ABSTRACT

High-fat diet (HFD) and overnutrition are important starting factors that may alter intestinal microbiota, lipid metabolism, and systemic inflammation. However, there were few studies on how intestinal microbiota contributes to tissue steatosis and hyperlipidemia. Here, we investigated the effect of lipid metabolism disorder-induced inflammation via toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and nuclear factor-κB (NF-κB) pathways at the intestinal level in response to HFD. Twenty 80-day-old male New Zealand White rabbits were randomly divided into the normal diet group (NDG) and the high-fat diet group (HDG) for 80 days. Growth performance, blood biochemical parameters, lipid metabolism, inflammation, degree of tissue steatosis, and intestinal microbial composition were measured. HFD increased the relative abundance of Christensenellaceae_R_7_group, Marvinbryantia, Akkermansia etc., with a reduced relative abundance of Enterorhabdus and Lactobacillus. Moreover, HFD caused steatosis in the liver and abdominal fat and abnormal expression of some genes related to lipid metabolism and tight junction proteins. The TLR-2, TLR-4, NF-κB, TNF-α, and IL-6 were confirmed by overexpression with downregulation of IL-10. Serum biochemical indices (TG, TCHO, LDL-C, and HDL-C) were also increased, indicating evidence for the development of the hyperlipidemia model. Correlation analysis showed that this microbial dysbiosis was correlated with lipid metabolism and inflammation, which were associated with the intestinal tract's barrier function and hyperlipidemia. These results provide an insight into the relationship between HFD, the intestinal microbiota, intestinal barrier, tissue inflammation, lipid metabolism, and hyperlipidemia. KEY POINTS: • High-fat diet leads to ileal microbiota disorders • Ileal microbiota mediates local and systemic lipid metabolism disorders and inflammation • There is a specific link between ileal microbiota, histopathology, and hyperlipidemia.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Rabbits , Male , Animals , Diet, High-Fat/adverse effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 2 , NF-kappa B , Hyperlipidemias/etiology , Interleukin-10 , Tumor Necrosis Factor-alpha , Interleukin-6 , Cholesterol, LDL/pharmacology , Inflammation , Tight Junction Proteins
14.
Sensors (Basel) ; 22(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35271147

ABSTRACT

This paper presents a metamaterial sensor using a double slit complementary square ring resonator (DS-CSRR) that has been utilized for the measurement of dielectric materials, especially coal powder. The design is optimized for best performance of deep notch depth in transmission coefficient (Magnitude of S21). Sensitivity analysis of transmission coefficient with respect to structure dimensions has been carried out. Metamaterial properties of double negative permitivity and permeability were extracted from the S-parameters of this sensor. The optimized structure is fabricated using low cost FR-4 PCB board. Measured result shows resonance frequency of 4.75 GHz with a deep notch up to -41 dB. Simulated and measured results show good agreement in desired frequency band. For material characterization, first, two known materials are characterized using this metamaterial sensor. Their respective resonances and dielectric constants are known, so the transcendental equation of the sensor is formulated. Afterwards, the proposed sensor is used for dielectric measurement of two types of coal powder, i.e., Anthracite and Bituminous. The measured value of dielectric constant of Anthracite coal is 3.5 and of Bituminous coal is 2.52. This is a simple and effective nondestructive measurement technique for material testing applications.

15.
Physiol Plant ; 173(1): 129-147, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33216991

ABSTRACT

Soil contamination with heavy metals caused by various industrial activities is a threatening global environmental issue of the current era. Chromium (Cr) is the most toxic heavy metal used in leather industry and disposal of untreated wastewater into natural water bodies leads to contamination of natural soil and water resources. We studied the combined effect of biochar and compost on improving the tolerance to Cr toxicity by enhancing the morpho-physiological and biochemical attributes of two maize cultivars (P-1543 and NK-8441) grown in tannery waste polluted soils. The results of this study reveal that Cr toxicity reduced the plant growth by affecting physiological and biochemical attributes. Here, compost and biochar application significantly increased the plant biomass (fresh and dry), height, photosynthesis, chlorophyll content, water relation, starch, and protein content over treatment set as control. However, significant decline in electrolyte leakage (EL), proline, lipid peroxidation, soluble sugars, and antioxidant enzymes (APX, GPX, GR, GST, GSH, SOD, and CAT) was observed by combined application of compost and biochar. Hexavalent chromium concentration was maximum decreased to 4.1 µg g-1 in soil after post-harvesting of maize cultivar NK-8441, while in roots and shoots to 22.6 and 19.2 µg g-1 of maize cultivar P-1543, respectively, by combined application of compost and biochar. Moreover, these both amendments in combination showed considerably better results than their sole application and cultivar P-1543 comparatively performed better than NK 8441, in both K and S soils. Correlation and principal component analysis (PCA) revealed mostly highly positive associations among all the studied morpho, physio, and biochemical attributes of maize plant with the few exceptions, particularly concentration of Cr(III) and Cr(VI) in soil. The present work concluded that combined use of biochar and compost has great potential to decrease Cr toxicity and improve plant growth in tannery polluted soils.


Subject(s)
Composting , Soil Pollutants , Charcoal , Chromium/toxicity , Soil , Soil Pollutants/toxicity , Zea mays
16.
Physiol Plant ; 172(2): 1336-1351, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33179272

ABSTRACT

Tetraena mandavillei L. is a perennial shrub native to the Middle Eastern countries of Asia, which is extensively regarded as a drought-tolerant plant. However, the plant reduces growth and biomass when grown in high concentrations of sodium chloride in the soil. We conducted a pot experiment to influence the negative impact of different levels of salinity (0, 10, and 20 dSm-1 ) and drought stress (100, 80, 60, and 40% water field capacity), to study different growth-related parameters, physiological alterations and ion uptake by T. mandavillei. Both salinity and drought stress caused a negative impact by affecting several attributes of T. mandavillei, but the plants showed some resistance against drought stress conditions in terms of growth and biomass. In addition to that, we noticed that a combinatorial and individual impact of drought and salinity stress decreased photosynthetic pigments and gas exchange parameters in T. mandavillei. Results also depicted that the combination of the abiotic stress conditions drought and salinity induced reactive oxygen species (ROS), indicating that the plants undergo oxidative damaged. However, due to the active plant defense system, the plant enhanced its performance under abiotic stress conditions, but due to the severe drought condition (40% water field capacity), a significant (P < 0.05) decrease in the activities of antioxidant compounds was caused. Furthermore, osmolytes also increased under both salinity and drought stress conditions in this study. Our results also showed that increased salinity and drought stress in the soil caused a significant increase in sodium (Na+ ) and chloride (Cl- ) ions in roots and shoots of T. mandavillei. In contrast to that, the contents of Calcium (Ca2+ ) and potassium (K+ ) were decreased in all organs of the plants with increasing levels of salinity and drought stress. Taken together, T. mandavillei can be classified as a facultative halophyte with the ability to tolerate drought stress and using salt accumulation mechanisms to tolerate salinity stress.


Subject(s)
Droughts , Salinity , Photosynthesis , Sodium Chloride/pharmacology , Stress, Physiological
17.
Int J Phytoremediation ; 23(8): 837-845, 2021.
Article in English | MEDLINE | ID: mdl-33372547

ABSTRACT

Plant-microbe interaction is a significant tool to tackle heavy metals problem in the soil. A pot trial was conducted to evaluate the efficiency of lead tolerant rhizobacteria in improving pea growth under Pb stress. Lead sulfate (PbSO4) was used for spiking (250, 500, and 750 mg kg-1). Results indicated that inoculation with Pb-tolerant PGPR strain not only alleviated the harmful impacts of Pb on plant growth but also immobilized it in the soil. PGPR in the presence of Pb at concentrations of 0, 250, 500 and 750 mg kg-1, increased shoot and root lengths by 21, 15, 18% and 72, 80, 84%, respectively, than uninoculated control. Moreover, fresh biomass of shoots and roots were also increased by 51, 45, 35% and 57, 101, 139% respectively, at Pb concentrations of 250, 500 and 750 mg kg-1. In addition, PGPR inoculation also reduced Pb concentration in the roots and shoots by 57, 55, 49% and 70, 56 and 58% respectively, than uninoculated control. So, PGPR proved to be an efficient option for reducing Pb mobility and can be effectively used for its phytostabilization. Novelty statementLead (Pb) is highly noxious and second most toxic element in the nature having high persistence. It ranks 1st in the priority list of hazardous substances and causes adverse effects after its entry into the living system. So, its remediation is inevitable. Plant growth promoting rhizobacteria (PGPR) possess the potential to not only survive under stressed environments, but also promote plant growth on account of their different plant growth promoting mechanisms.Most researchers have worked on its bioaccumulation in plant body. This study however, used pea as a test crop and caused Pb phytostabilization and thereby, suppressed its entry in the above-ground plant parts.


Subject(s)
Lead , Soil Pollutants , Biodegradation, Environmental , Lead/analysis , Pisum sativum , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
18.
Physiol Mol Biol Plants ; 27(2): 297-312, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33707870

ABSTRACT

Cadmium (Cd) in soil-plant system can abridge plant growth by initiating alterations in root zones. Hydroponics and rhizoboxes are useful techniques to monitor plant responses against various natural and/or induced metal stresses. However, soil based studies are considered more appropriate in order to devise efficient food safety and remediation strategies. The present research evaluated the Cd-mediated variations in elemental dynamics of rhizospheric soil together with in planta ionomics and morpho-physio-biochemical traits of two differentially Cd responsive maize cultivars. Cd-sensitive (31P41) and Cd-tolerant (3062) cultivars were grown in pots filled with 0, 20, 40, 60 and 80 µg/kg CdCl2 supplemented soil. The results depicted that the maize cultivars significantly influenced the elemental dynamics of rhizosphere as well as in planta mineral accumulation under applied Cd stress. The uptake and translocation of N, P, K, Ca, Mg, Zn and Fe from rhizosphere and root cell sap was significantly higher in Cd stressed cv. 3062 as compared to cv. 31P41. In sensitive cultivar (31P41), Cd toxicity resulted in significantly prominent reduction of biomass, leaf area, chlorophyll, carotenoids, protein contents as well as catalase activity in comparison to tolerant one (3062). Analysis of tolerance indexes (TIs) validated that cv. 3062 exhibited advantageous growth and efficient Cd tolerance due to elevated proline, phenolics and activity of antioxidative machinery as compared to cv. 31P41. The cv. 3062 exhibited 54% and 37% less Cd bio-concentration (BCF) and translocation factors (TF), respectively in comparison to cv. 31P41 under highest Cd stress regime. Lower BCF and TF designated a higher Cd stabilization by tolerant cultivar (3062) in rhizospheric zone and its potential use in future remediation plans.

19.
J Theor Biol ; 473: 52-66, 2019 07 21.
Article in English | MEDLINE | ID: mdl-30980870

ABSTRACT

During cytokinesis in budding yeast (Saccharomyces cerevisiae) damaged proteins are distributed asymmetrically between the daughter and the mother cell. Retention of damaged proteins is a crucial mechanism ensuring a healthy daughter cell with full replicative potential and an ageing mother cell. However, the protein quality control (PQC) system is tuned for optimal reproduction success which suggests optimal health and size of the population, rather than long-term survival of the mother cell. Modelling retention of damage as an adaptable mechanism, we propose two damage retention strategies to find an optimal way of decreasing damage retention efficiency to maximize population size and minimize the damage in the individual yeast cell. A pedigree model is used to investigate the impact of small variations in the strategies over the whole population. These impacts are based on the altruistic effects of damage retention mechanism and are measured by a cost function whose minimum value provides the optimal health and size of the population. We showed that fluctuations in the cost function allow yeast cell to continuously vary its strategy, suggesting that optimal reproduction success is a local minimum of the cost function. Our results suggest that a rapid decrease in the efficiency of damage retention, at the time when the mother cell is almost exhausted, produces fewer daughters with high levels of damaged proteins. In addition, retaining more damage during the early divisions increases the number of healthy daughters in the population.


Subject(s)
Adaptation, Physiological , Saccharomyces cerevisiae/physiology , Cell Division , Computer Simulation , Models, Biological , Saccharomyces cerevisiae/cytology , Stochastic Processes
20.
Ecotoxicol Environ Saf ; 174: 714-727, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30878808

ABSTRACT

Soil contamination with toxic metals is a widespread environmental issue resulting from global industrialization within the past few years. Therefore, decontamination of heavy metal contaminated soils is very important to reduce the associated risks and for maintenance of environmental health and ecological restoration. Conventional techniques for reclamation of such soils are expensive and environmental non-friendly. Phytoremediation is an emerging technology implementing green plants to clean up the environment from contaminants and has been considered as a cost-effective and non-invasive alternative to the conventional remediation approaches. There are different types of phytoremediation including, phytostabilization, phytostimulation, phytotransformation, phytofiltration and phytoextraction, the latter being most extensively acknowledged for remediation of soils contaminated with toxic heavy metals. Recent literature is gathered to critically review the sources, hazardous effects of toxic heavy metals and environmentally sustainable phytoremediation technique for heavy metal polluted soils to offer widespread applicability of this green technology. Different strategies to enhance the bioavailability of heavy metals in the soil are also discussed shortly. It can be concluded that phytoremediation of heavy metal contaminated soils is a reliable tool and necessary for making the land resource accessible for crop production.


Subject(s)
Conservation of Natural Resources , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biological Availability , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL