Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cell ; 162(1): 72-83, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26119340

ABSTRACT

Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals.


Subject(s)
Drosophila melanogaster/metabolism , Longevity , MAP Kinase Signaling System , Aging , Animals , Drosophila Proteins/metabolism , Eye Proteins/metabolism , Insulin Receptor Substrate Proteins/metabolism , MAP Kinase Signaling System/drug effects , Models, Animal , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Repressor Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 121(4): e2311313121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241436

ABSTRACT

Pharmacological therapies are promising interventions to slow down aging and reduce multimorbidity in the elderly. Studies in animal models are the first step toward translation of candidate molecules into human therapies, as they aim to elucidate the molecular pathways, cellular mechanisms, and tissue pathologies involved in the anti-aging effects. Trametinib, an allosteric inhibitor of MEK within the Ras/MAPK (Ras/Mitogen-Activated Protein Kinase) pathway and currently used as an anti-cancer treatment, emerged as a geroprotector candidate because it extended lifespan in the fruit fly Drosophila melanogaster. Here, we confirm that trametinib consistently and robustly extends female lifespan, and reduces intestinal stem cell (ISC) proliferation, tumor formation, tissue dysplasia, and barrier disruption in guts in aged flies. In contrast, pro-longevity effects of trametinib are weak and inconsistent in males, and it does not influence gut homeostasis. Inhibition of the Ras/MAPK pathway specifically in ISCs is sufficient to partially recapitulate the effects of trametinib. Moreover, in ISCs, trametinib decreases the activity of the RNA polymerase III (Pol III), a conserved enzyme synthesizing transfer RNAs and other short, non-coding RNAs, and whose inhibition also extends lifespan and reduces gut pathology. Finally, we show that the pro-longevity effect of trametinib in ISCs is partially mediated by Maf1, a repressor of Pol III, suggesting a life-limiting Ras/MAPK-Maf1-Pol III axis in these cells. The mechanism of action described in this work paves the way for further studies on the anti-aging effects of trametinib in mammals and shows its potential for clinical application in humans.


Subject(s)
Drosophila melanogaster , Drosophila , Pyridones , Pyrimidinones , Animals , Male , Humans , Female , Aged , Drosophila melanogaster/genetics , Aging/physiology , Stem Cells/metabolism , Mammals
3.
Genome Res ; 32(2): 258-265, 2022 02.
Article in English | MEDLINE | ID: mdl-35078808

ABSTRACT

Reduced provision of protein translation machinery promotes healthy aging in a number of animal models. In humans, however, inborn impairments in translation machinery are a known cause of several developmental disorders, collectively termed ribosomopathies. Here, we use casual inference approaches in genetic epidemiology to investigate whether adult, tissue-specific biogenesis of translation machinery drives human aging. We assess naturally occurring variation in the expression of genes encoding subunits specific to the two RNA polymerases (Pols) that transcribe ribosomal and transfer RNAs, namely Pol I and III, and the variation in expression of ribosomal protein (RP) genes, using Mendelian randomization. We find each causally associated with human longevity (ß = -0.15 ± 0.047, P = 9.6 × 10-4, q = 0.015; ß = -0.13 ± 0.040, P = 1.4 × 10-3, q = 0.023; ß = -0.048 ± 0.016, P = 3.5 × 10-3, q = 0.056, respectively), and this does not appear to be mediated by altered susceptibility to a single disease. We find that reduced expression of Pol III, RPs, or Pol I promotes longevity from different organs, namely visceral adipose, liver, and skeletal muscle, echoing the tissue specificity of ribosomopathies. Our study shows the utility of leveraging genetic variation in expression to elucidate how essential cellular processes impact human aging. The findings extend the evolutionary conservation of protein synthesis as a critical process that drives animal aging to include humans.


Subject(s)
Aging , Protein Biosynthesis , RNA Polymerase I , Aging/genetics , Animals , DNA-Directed RNA Polymerases , Humans , Mendelian Randomization Analysis , RNA Polymerase I/metabolism , Ribosomal Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism
4.
Trends Genet ; 36(5): 373-382, 2020 05.
Article in English | MEDLINE | ID: mdl-32294417

ABSTRACT

The increasing number of older people is resulting in an increased prevalence of age-related diseases. Research has shown that the ageing process itself is a potential point of intervention. Indeed, gene expression can be optimised for health in older ages through manipulation of transcription factor (TF) activity. This review is focused on the ever-growing number of TFs whose effects on ageing are evolutionarily conserved. These regulate a plethora of functions, including stress resistance, metabolism, and growth. They are engaged in complex interactions within and between different cell types, impacting the physiology of the entire organism. Since ageing is not programmed, the conservation of their effects on lifespan is most likely a reflection of the conservation of their functions in youth.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Longevity/genetics , Transcription Factors/genetics , Aging/genetics , Gene Expression Regulation/genetics , Humans
5.
Nature ; 552(7684): 263-267, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29186112

ABSTRACT

Three distinct RNA polymerases transcribe different classes of genes in the eukaryotic nucleus. RNA polymerase (Pol) III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including tRNAs and 5S rRNA. The historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. Target of rapamycin kinase complex 1 (TORC1) regulates Pol III activity, and is also an important determinant of longevity. This raises the possibility that Pol III is involved in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting the activity of Pol III in the gut of adult worms or flies is sufficient to extend lifespan; in flies, longevity can be achieved by Pol III inhibition specifically in intestinal stem cells. The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Pol III acts on lifespan downstream of TORC1, and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal mediator of this key nutrient-signalling network for longevity; the growth-promoting anabolic activity of Pol III mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target.


Subject(s)
Longevity/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA Polymerase III/metabolism , Aging/drug effects , Aging/physiology , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/physiology , Drosophila melanogaster/drug effects , Drosophila melanogaster/enzymology , Drosophila melanogaster/physiology , Evolution, Molecular , Female , Food , Intestines/cytology , Intestines/enzymology , Longevity/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Protein Biosynthesis , RNA Polymerase III/antagonists & inhibitors , RNA Polymerase III/deficiency , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/physiology , Stem Cells/cytology , Stem Cells/enzymology
6.
PLoS Genet ; 15(7): e1008212, 2019 07.
Article in English | MEDLINE | ID: mdl-31356597

ABSTRACT

Ageing populations pose one of the main public health crises of our time. Reprogramming gene expression by altering the activities of sequence-specific transcription factors (TFs) can ameliorate deleterious effects of age. Here we explore how a circuit of TFs coordinates pro-longevity transcriptional outcomes, which reveals a multi-tissue and multi-species role for an entire protein family: the E-twenty-six (ETS) TFs. In Drosophila, reduced insulin/IGF signalling (IIS) extends lifespan by coordinating activation of Aop, an ETS transcriptional repressor, and Foxo, a Forkhead transcriptional activator. Aop and Foxo bind the same genomic loci, and we show that, individually, they effect similar transcriptional programmes in vivo. In combination, Aop can both moderate or synergise with Foxo, dependent on promoter context. Moreover, Foxo and Aop oppose the gene-regulatory activity of Pnt, an ETS transcriptional activator. Directly knocking down Pnt recapitulates aspects of the Aop/Foxo transcriptional programme and is sufficient to extend lifespan. The lifespan-limiting role of Pnt appears to be balanced by a requirement for metabolic regulation in young flies, in which the Aop-Pnt-Foxo circuit determines expression of metabolic genes, and Pnt regulates lipolysis and responses to nutrient stress. Molecular functions are often conserved amongst ETS TFs, prompting us to examine whether other Drosophila ETS-coding genes may also affect ageing. We show that five out of eight Drosophila ETS TFs play a role in fly ageing, acting from a range of organs and cells including the intestine, adipose and neurons. We expand the repertoire of lifespan-limiting ETS TFs in C. elegans, confirming their conserved function in ageing and revealing that the roles of ETS TFs in physiology and lifespan are conserved throughout the family, both within and between species.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Eye Proteins/metabolism , Forkhead Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Adipose Tissue/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Intestinal Mucosa/metabolism , Lipolysis , Longevity , Metabolic Networks and Pathways , Nerve Tissue Proteins/genetics , Neurons/metabolism , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics
7.
Proc Natl Acad Sci U S A ; 113(5): 1321-6, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787908

ABSTRACT

Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice.


Subject(s)
Drosophila Proteins/physiology , Drosophila/genetics , Insulin/genetics , Mutation , Receptors, Cytoplasmic and Nuclear/physiology , Xenobiotics/pharmacology , Animals , Drug Resistance , Life Expectancy , Transcription, Genetic
8.
Mol Syst Biol ; 13(9): 939, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916541

ABSTRACT

Lowered activity of the insulin/IGF signalling (IIS) network can ameliorate the effects of ageing in laboratory animals and, possibly, humans. Although transcriptome remodelling in long-lived IIS mutants has been extensively documented, the causal mechanisms contributing to extended lifespan, particularly in specific tissues, remain unclear. We have characterized the proteomes of four key insulin-sensitive tissues in a long-lived Drosophila IIS mutant and control, and detected 44% of the predicted proteome (6,085 proteins). Expression of ribosome-associated proteins in the fat body was reduced in the mutant, with a corresponding, tissue-specific reduction in translation. Expression of mitochondrial electron transport chain proteins in fat body was increased, leading to increased respiration, which was necessary for IIS-mediated lifespan extension, and alone sufficient to mediate it. Proteasomal subunits showed altered expression in IIS mutant gut, and gut-specific over-expression of the RPN6 proteasomal subunit, was sufficient to increase proteasomal activity and extend lifespan, whilst inhibition of proteasome activity abolished IIS-mediated longevity. Our study thus uncovered strikingly tissue-specific responses of cellular processes to lowered IIS acting in concert to ameliorate ageing.


Subject(s)
Aging/metabolism , Drosophila/metabolism , Gene Regulatory Networks , Proteomics/methods , Animals , Drosophila Proteins , Fat Body/metabolism , Insulin/metabolism , Intestinal Mucosa/metabolism , Models, Animal , Mutation , Organ Specificity , Ribosomal Proteins/metabolism
9.
PLoS Genet ; 10(9): e1004619, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25232726

ABSTRACT

Forkhead box O (FoxO) transcription factors (TFs) are key drivers of complex transcriptional programmes that determine animal lifespan. FoxOs regulate a number of other TFs, but how these TFs in turn might mediate the anti-ageing programmes orchestrated by FoxOs in vivo is unclear. Here, we identify an E-twenty six (ETS)-family transcriptional repressor, Anterior open (Aop), as regulated by the single Drosophila melanogaster FoxO (dFOXO) in the adult gut. AOP, the functional orthologue of the human Etv6/Tel protein, binds numerous genomic sites also occupied by dFOXO and counteracts the activity of an ETS activator, Pointed (Pnt), to prevent the lifespan-shortening effects of co-activation of dFOXO and PNT. This detrimental synergistic effect of dFOXO and PNT appears to stem from a mis-regulation of lipid metabolism. At the same time, AOP activity in another fly organ, the fat body, has further beneficial roles, regulating genes in common with dfoxo, such as the secreted, non-sensory, odorant binding protein (Obp99b), and robustly extending lifespan. Our study reveals a complex interplay between evolutionarily conserved ETS factors and dFOXO, the functional significance of which may extend well beyond animal lifespan.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Forkhead Transcription Factors/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Cluster Analysis , Fat Body , Female , Gene Expression Profiling , Gene Expression Regulation , Life Expectancy , Lipid Metabolism , Organ Specificity/genetics , Protein Binding
10.
Proc Biol Sci ; 282(1800): 20141720, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25520354

ABSTRACT

Ageing can be modulated by genetic as well as nutritional interventions. In female Drosophila melanogaster, lifespan is maximized at intermediate concentrations of sucrose as the carbohydrate source, and yeast as the protein source. Dampening the signal through the insulin/IGF signalling (IIS) pathway, by genetic ablation of median neurosecretory cells (mNSCs) that produce insulin-like peptides, extends lifespan and counteracts the detrimental effects of excess yeast. However, how IIS reduction impacts health on a high-sugar diet remains unclear. We find that, while the ablation of the mNSCs can extend lifespan and delay the age-related decline in the health of the neuromuscular system irrespective of the amount of dietary sugar, it cannot rescue the lifespan-shortening effects of excess sugar. On the other hand, ablation of mNSCs can prevent adult obesity resulting from excess sugar, and this effect appears independent from the canonical effector of IIS, dfoxo. Our study indicates that while treatments that reduce IIS have anti-ageing effects irrespective of dietary sugar, additional interventions may be required to achieve full benefits in humans, where excessive sugar consumption is a growing problem. At the same time, pathways regulated by IIS may be suitable targets for treatment of obesity.


Subject(s)
Drosophila melanogaster/physiology , Insulin/metabolism , Sucrose/metabolism , Aging/physiology , Animals , Drosophila melanogaster/cytology , Female , Longevity , Neurosecretion , Signal Transduction
11.
Aging Cell ; 23(5): e14141, 2024 05.
Article in English | MEDLINE | ID: mdl-38465473

ABSTRACT

The genetic pathways that modulate ageing in multicellular organisms are typically highly conserved across wide evolutionary distances. Recently RNA polymerase III (Pol III) was shown to promote ageing in yeast, C. elegans and D. melanogaster. In this study we investigated the role of Pol III in mammalian ageing using C57BL/6N mice heterozygous for Pol III (Polr3b+/-). We identified sexually dimorphic, organ-specific beneficial as well as detrimental effects of the Polr3b+/- mutation on health. Female Polr3b+/- mice displayed improved bone health during ageing, but their ability to maintain an effective gut barrier function was compromised and they were susceptible to idiopathic dermatitis (ID). In contrast, male Polr3b+/- mice were lighter than wild-type (WT) males and had a significantly improved gut barrier function in old age. Several metabolic parameters were affected by both age and sex, but no genotype differences were detected. Neither male nor female Polr3b+/- mice were long-lived compared to WT controls. Overall, we find no evidence that a reduced Pol III activity extends mouse lifespan but we do find some potential organ- and sex-specific benefits for old-age health.


Subject(s)
Aging , Heterozygote , Longevity , Mice, Inbred C57BL , RNA Polymerase III , Animals , Mice , Longevity/genetics , Aging/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Female , Male
12.
iScience ; 27(6): 109962, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832022

ABSTRACT

Transcription factors can reprogram gene expression to promote longevity. Here, we investigate the role of Drosophila Xbp1. Xbp1 is activated by splicing of its primary transcript, Xbp1u, to generate Xbp1s, a key activator of the endoplasmic reticulum unfolded protein response (UPRER). We show that Xbp1s induces the conical UPRER in the gut, promoting longevity from the resident stem cells. In contrast, in the fat body, Xbp1s does not appear to trigger UPRER but alters metabolic gene expression and is still able to extend lifespan. In the fat body, Xbp1s and dFOXO impinge on the same target genes, including the PGC-1α orthologue Srl, and dfoxo requires Xbp1 to extend lifespan. Interestingly, unspliceable version of the Xbp1 mRNA, Xbp1u can also extend lifespan, hinting at roles in longevity for the poorly characterized Xbp1u transcription factor. These findings reveal the diverse functions of Xbp1 in longevity in the fruit fly.

13.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38740431

ABSTRACT

Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Mechanistic Target of Rapamycin Complex 1 , RNA Polymerase III , Signal Transduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Longevity/genetics , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Aging/metabolism , Aging/genetics , Aging/physiology
14.
PLoS Genet ; 6(3): e1000881, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20333234

ABSTRACT

Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Longevity/physiology , Oxidative Stress , Animals , Body Size , Drosophila melanogaster/genetics , Female , Fertility , Gene Expression Regulation , Insulin/metabolism , MAP Kinase Signaling System/genetics , Male , Mutation/genetics , Oxidative Stress/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Sex Characteristics , Starvation , Transcription, Genetic , ras Proteins/metabolism
15.
Mol Syst Biol ; 7: 502, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21694719

ABSTRACT

FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.


Subject(s)
Drosophila Proteins/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Profiling/methods , Insulin/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Down-Regulation , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Female , Forkhead Transcription Factors/genetics , GATA Transcription Factors/metabolism , Genome, Insect , Oxidative Stress , Phenotype , Signal Transduction , Somatomedins/metabolism , Up-Regulation
16.
Nat Aging ; 2(12): 1176-1190, 2022 12.
Article in English | MEDLINE | ID: mdl-37118537

ABSTRACT

A transient, homeostatic transcriptional response can result in transcriptional memory, programming subsequent transcriptional outputs. Transcriptional memory has great but unappreciated potential to alter animal aging as animals encounter a multitude of diverse stimuli throughout their lifespan. Here we show that activating an evolutionarily conserved, longevity-promoting transcription factor, dFOXO, solely in early adulthood of female fruit flies is sufficient to improve their subsequent health and survival in midlife and late life. This youth-restricted dFOXO activation causes persistent changes to chromatin landscape in the fat body and requires chromatin remodelers such as the SWI/SNF and ISWI complexes to program health and longevity. Chromatin remodeling is accompanied by a long-lasting transcriptional program that is distinct from that observed during acute dFOXO activation and includes induction of Xbp1. We show that this later-life induction of Xbp1 is sufficient to curtail later-life mortality. Our study demonstrates that transcriptional memory can profoundly alter how animals age.


Subject(s)
Chromatin Assembly and Disassembly , Drosophila Proteins , Animals , Female , Chromatin Assembly and Disassembly/genetics , Transcription Factors/genetics , Gene Expression Regulation , Drosophila/metabolism , Chromatin/genetics , DNA-Binding Proteins/genetics
17.
Front Genet ; 12: 758135, 2021.
Article in English | MEDLINE | ID: mdl-34539762

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2021.705122.].

18.
Front Genet ; 12: 705122, 2021.
Article in English | MEDLINE | ID: mdl-34295356

ABSTRACT

Transcription in eukaryotic cells is performed by three RNA polymerases. RNA polymerase I synthesises most rRNAs, whilst RNA polymerase II transcribes all mRNAs and many non-coding RNAs. The largest of the three polymerases is RNA polymerase III (Pol III) which transcribes a variety of short non-coding RNAs including tRNAs and the 5S rRNA, in addition to other small RNAs such as snRNAs, snoRNAs, SINEs, 7SL RNA, Y RNA, and U6 spilceosomal RNA. Pol III-mediated transcription is highly dynamic and regulated in response to changes in cell growth, cell proliferation and stress. Pol III-generated transcripts are involved in a wide variety of cellular processes, including translation, genome and transcriptome regulation and RNA processing, with Pol III dys-regulation implicated in diseases including leukodystrophy, Alzheimer's, Fragile X-syndrome and various cancers. More recently, Pol III was identified as an evolutionarily conserved determinant of organismal lifespan acting downstream of mTORC1. Pol III inhibition extends lifespan in yeast, worms and flies, and in worms and flies acts from the intestine and intestinal stem cells respectively to achieve this. Intriguingly, Pol III activation achieved through impairment of its master repressor, Maf1, has also been shown to promote longevity in model organisms, including mice. In this review we introduce the Pol III transcription apparatus and review the current understanding of RNA Pol III's role in ageing and lifespan in different model organisms. We then discuss the potential of Pol III as a therapeutic target to improve age-related health in humans.

19.
Sci Rep ; 10(1): 3418, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32099025

ABSTRACT

The Insulin/IGF-1 signalling (IIS) pathway plays an essential role in the regulation of glucose and lipid homeostasis. At the same time, a reduction in the IIS pathway activity can extend lifespan and healthspan in various model organisms. Amongst a number of body organs that sense and respond to insulin/IGF-1, the adipose tissue has a central role in both the metabolic and lifespan effects of IIS at the organismal level. Genetic inactivation of IIS components specifically in the adipose tissue has been shown before to improve metabolic profile and extend lifespan in various model organisms. We sought to identify conserved molecular mechanisms that may underlie the beneficial effects of IIS inhibition in the adipose tissue, specifically at the level of phosphoinositide 3-kinase (PI3K), a key IIS effector molecule. To this end, we inactivated PI3K by genetic means in the fly fat body and by pharmacological inhibition in mammalian adipocytes. Gene expression studies revealed changes to metabolism and upregulation of mitochondrial activity in mouse adipocytes and fly fat bodies with downregulated PI3K, which were confirmed by biochemical assays in mammalian adipocytes. These data suggest that PI3K inactivation has a conserved effect of upregulating mitochondrial metabolism in both fly and mammalian adipose tissue, which likely contributes to the health- and life-span extending effect of IIS pathway downregulation.


Subject(s)
Adipose Tissue/metabolism , Drosophila Proteins/metabolism , Insulin/metabolism , Lipid Metabolism , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , 3T3-L1 Cells , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Insulin/genetics , Mice , Mitochondria/genetics , Phosphatidylinositol 3-Kinases/genetics
20.
Cell Rep ; 30(6): 1661-1669.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049000

ABSTRACT

Health and survival in old age can be improved by changes in gene expression. RNA polymerase (Pol) I is the essential, conserved enzyme whose task is to generate the pre-ribosomal RNA (rRNA). We find that reducing the levels of Pol I activity is sufficient to extend lifespan in the fruit fly. This effect can be recapitulated by partial, adult-restricted inhibition, with both enterocytes and stem cells of the adult midgut emerging as important cell types. In stem cells, Pol I appears to act in the same longevity pathway as Pol III, implicating rRNA synthesis in these cells as the key lifespan determinant. Importantly, reduction in Pol I activity delays broad, age-related impairment and pathology, improving the function of diverse organ systems. Hence, our study shows that Pol I activity in the adult drives systemic, age-related decline in animal health and anticipates mortality.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , RNA Polymerase I/antagonists & inhibitors , Animals , Longevity
SELECTION OF CITATIONS
SEARCH DETAIL