Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Lett ; 44(24): 6021-6024, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-32628209

ABSTRACT

Transparent substrates introduce challenges in optical metrology, recording, and microscopy. Backside reflections reduce signal to noise, are recorded as artifacts, or introduce spurious signals. These reflections often need to be suppressed, but large angular and spectral bandwidths preclude the use of anti-reflection (AR) coatings. Using elastomeric materials doped with optical absorbers, we detail a method and a materials set for temporary suppression of Fresnel reflections for multiple substrates spanning wide spectral and angular bandwidths. Tuning the refractive index of the elastomer to match a substrate minimizes reflection and the addition of different absorptive dopants allow for either broadband or wavelength-selective reflection suppression. As performance is limited only by the index mismatch, both spectral and angular performances significantly exceed those of AR coatings. We demonstrate reflection suppression in excess of 30 dB spanning a bandwidth over 500 nm. After use, these light traps may be removed and reused without damaging the substrate.

2.
Opt Lett ; 44(7): 1540-1543, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933085

ABSTRACT

We show the design and fabrication of high diffraction efficiency, optically recorded gradient-index Fresnel lenses in a two-stage photopolymer. A design analysis reveals that lens f/# is limited by the material refractive index contrast, motivating use of recent high-contrast polymers. The number of pixels required for the optical exposure is typically well beyond available spatial light-modulator resolutions, motivating the use of a photolithographic mask. We use a dithered binary chrome mask with 9000×9000 pixels of 2.5 µm diameter to write lenses up to 23 mm in diameter. Lenses down to f/44 with 76% diffraction efficiency and f/79 with 83% diffraction efficiency are demonstrated.

3.
Opt Express ; 26(2): 1851-1869, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401908

ABSTRACT

Precise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the transport of intensity equation in conjunction with confocal reflection microscopy to capture the complete spatial frequency spectrum of isolated 10 µm-scale gradient-refractive index structures written by single-photon direct-write laser lithography. The model material, a high-performance two-component photopolymer, is found to be linear, integrating, and described by a single master dose response function. The sharp saturation of this function is used to demonstrate nearly binary, flat-topped waveguide profiles in response to a Gaussian focus.

4.
Opt Lett ; 43(8): 1866-1869, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29652385

ABSTRACT

We demonstrate that multiple exposures of a two-component holographic photopolymer can quadruple the refractive index contrast of the material beyond the single-exposure saturation limit. Quantitative phase microscopy of isolated structures written by laser direct-write lithography is used to characterize the process. This technique reveals that multiple exposures are made possible by diffusion of the chemical components consumed during writing into the previously exposed regions. The ultimate index contrast is shown to be limited by the solubility of fresh components into the multiply exposed region.

5.
Polym Chem ; 11(1): 39-46, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31903100

ABSTRACT

Photopolymerizable semicrystalline thermoplastics resulting from thiol-ene polymerizations were formed via fast polymerizations and achieved excellent mechanical properties. These materials have been shown to produce materials desirable for additive manufacturing (3D printing), especially for recyclable printing and investment casting. However, while well-resolved prints were previously achieved with the thiol-ene thermoplastics, the remarkable elongation at break (ϵmax) and toughness (T) attained in bulk were not realized for 3D printed components (ϵmax,bulk ~ 790%, Tbulk ~ 102 MJ m-3 vs. ϵmax,print < 5%, Tprint < 0.5 MJ m-3). In this work, small concentrations (5-10 mol%) of a crosslinker were added to the original thiol-ene resin composition without sacrificing crystallization potential to achieve semicrystalline, covalently crosslinked networks with enhanced mechanical properties. Improvements in ductility and overall toughness were observed for printed crosslinked structures, and substantial mechanical augmentation was further demonstrated with post-manufacture thermal conditioning of printed materials above the melting temperature (Tm). In some instances, this thermal conditioning to reset the crystalline component of the crosslinked prints yielded mechanical properties that were comparable or superior to its bulk counterpart (ϵmax ~ 790%, T ~ 95 MJ m-3). These unique photopolymerizations and their corresponding monomer compositions exhibited concurrent polymerization and crystallization along with mechanical properties that were tunable by changes to the monomer composition, photopolymerization conditions, and post-polymerization conditioning. This is the first example of a 3D printed semicrystalline, crosslinked material with thermally tunable mechanical properties that are superior to many commercially-available resins.

6.
ACS Appl Mater Interfaces ; 10(1): 1217-1224, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29235344

ABSTRACT

Holographic photopolymers capable of high refractive index modulation (Δn) on the order of 10-2 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix. When examined in comparison to a widely used high refractive index monomer, 2,4,6-tribromophenyl acrylate, BPTPA exhibited superior solubility in a stage 1 urethane matrix of approximately 50% with a 20% higher refractive index increase per unit amount of the writing monomer for stage 2 polymerizations. Formulations with 60 wt % loading of BPTPA exhibit a peak-to-mean holographic Δn ≈ 0.029 without obvious deficiencies in transparency, color, or scatter. To the best of our knowledge, this value is the highest reported in the peer-reviewed literature for a transmission hologram. The capabilities and versatility of BPTPA-based formulations are demonstrated at varying length scales via demonstrative refractive index gradient structure examples including direct laser write, projection mask lithography of a 1″ diameter Fresnel lens, and ∼100% diffraction efficiency volume transmission holograms with a 1 µm fringe spacing in 11 µm thick samples.

7.
Macromolecules ; 49(21): 8061-8074, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-28989189

ABSTRACT

A kinetic mechanism and the accompanying mathematical framework are presented for base-mediated thiol-Michael photopolymerization kinetics involving a photobase generator. Here, model kinetic predictions demonstrate excellent agreement with a representative experimental system composed of 2-(2-nitrophenyl)propyloxycarbonyl-1,1,3,3-tetramethylguanidine (NPPOC-TMG) as a photobase generator that is used to initiate thiol-vinyl sulfone Michael addition reactions and polymerizations. Modeling equations derived from a basic mechanistic scheme indicate overall polymerization rates that follow a pseudo-first-order kinetic process in the base and coreactant concentrations, controlled by the ratio of the propagation to chain-transfer kinetic parameters (kp/kCT) which is dictated by the rate-limiting step and controls the time necessary to reach gelation. Gelation occurs earlier as the kp/kCT ratio reaches a critical value, wherefrom gel times become nearly independent of kp/kCT. The theoretical approach allowed determining the effect of induction time on the reaction kinetics due to initial acid-base neutralization for the photogenerated base caused by the presence of protic contaminants. Such inhibition kinetics may be challenging for reaction systems that require high curing rates but are relevant for chemical systems that need to remain kinetically dormant until activated although at the ultimate cost of lower polymerization rates. The pure step-growth character of this living polymerization and the exhibited kinetics provide unique potential for extended dark-cure reactions and uniform material properties. The general kinetic model is applicable to photobase initiators where photolysis follows a unimolecular cleavage process releasing a strong base catalyst without cogeneration of intermediate radical species.

8.
ACS Appl Mater Interfaces ; 8(43): 29658-29667, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27802605

ABSTRACT

We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.

SELECTION OF CITATIONS
SEARCH DETAIL