Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(8): e1011274, 2023 08.
Article in English | MEDLINE | ID: mdl-37549143

ABSTRACT

Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Humans , Animals , Pregnancy , Female , Zika Virus/genetics , Macaca mulatta , Placenta , Pregnancy Complications, Infectious/metabolism , Fetal Death , Infectious Disease Transmission, Vertical , Extraembryonic Membranes/metabolism
2.
PLoS Pathog ; 19(3): e1011282, 2023 03.
Article in English | MEDLINE | ID: mdl-36976812

ABSTRACT

In the 2016 Zika virus (ZIKV) pandemic, a previously unrecognized risk of birth defects surfaced in babies whose mothers were infected with Asian-lineage ZIKV during pregnancy. Less is known about the impacts of gestational African-lineage ZIKV infections. Given high human immunodeficiency virus (HIV) burdens in regions where African-lineage ZIKV circulates, we evaluated whether pregnant rhesus macaques infected with simian immunodeficiency virus (SIV) have a higher risk of African-lineage ZIKV-associated birth defects. Remarkably, in both SIV+ and SIV- animals, ZIKV infection early in the first trimester caused a high incidence (78%) of spontaneous pregnancy loss within 20 days. These findings suggest a significant risk for early pregnancy loss associated with African-lineage ZIKV infection and provide the first consistent ZIKV-associated phenotype in macaques for testing medical countermeasures.


Subject(s)
Abortion, Spontaneous , Pregnancy Complications, Infectious , Simian Immunodeficiency Virus , Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Humans , Zika Virus/genetics , Macaca mulatta , Pregnancy Trimester, First
3.
J Virol ; 97(10): e0116223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800949

ABSTRACT

IMPORTANCE: Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.


Subject(s)
Culicidae , Genetic Fitness , Mosquito Vectors , Virulence , Zika Virus , Animals , Mice , Culicidae/virology , Mosquito Vectors/virology , Virulence/genetics , Zika Virus/chemistry , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/transmission , Zika Virus Infection/virology , Serial Passage , Amino Acid Substitution , Genetic Fitness/genetics
4.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33536175

ABSTRACT

Zika virus (ZIKV) has the unusual capacity to circumvent natural alternating mosquito-human transmission and be directly transmitted human-to-human via sexual and vertical routes. The impact of direct transmission on ZIKV evolution and adaptation to vertebrate hosts is unknown. Here we show that molecularly barcoded ZIKV rapidly adapted to a mammalian host during direct transmission chains in mice, coincident with the emergence of an amino acid substitution previously shown to enhance virulence. In contrast, little to no adaptation of ZIKV to mice was observed following chains of direct transmission in mosquitoes or alternating host transmission. Detailed genetic analyses revealed that ZIKV evolution in mice was generally more convergent and subjected to more relaxed purifying selection than in mosquitoes or alternate passages. These findings suggest that prevention of direct human transmission chains may be paramount to resist gains in ZIKV virulence.Importance We used experimental evolution to model chains of direct and indirect Zika virus (ZIKV) transmission by serially passaging a synthetic swarm of molecularly barcoded ZIKV within and between mosquitoes and mice. We observed that direct mouse transmission chains facilitated a rapid increase in ZIKV replication and enhanced virulence in mice. These findings demonstrate that ZIKV is capable of rapid adaptation to a vertebrate host and indicate that direct human-to-human transmission could pose a greater threat to public health than currently realized.

5.
J Virol ; 95(21): e0081821, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34379510

ABSTRACT

Zika virus (ZIKV) is a flavivirus that causes a constellation of adverse fetal outcomes collectively termed congenital Zika syndrome (CZS). However, not all pregnancies exposed to ZIKV result in an infant with apparent defects. During the 2015 to 2016 American outbreak of ZIKV, CZS rates varied by geographic location. The underlying mechanisms responsible for this heterogeneity in outcomes have not been well defined. Therefore, we sought to characterize and compare the pathogenic potential of multiple Asian-/American-lineage ZIKV strains in an established Ifnar1-/- pregnant mouse model. Here, we show significant differences in the rate of fetal demise following maternal inoculation with ZIKV strains from Puerto Rico, Panama, Mexico, Brazil, and Cambodia. Rates of fetal demise broadly correlated with maternal viremia but were independent of fetus and placenta virus titer, indicating that additional underlying factors contribute to fetal outcome. Our results, in concert with those from other studies, suggest that subtle differences in ZIKV strains may have important phenotypic impacts. With ZIKV now endemic in the Americas, greater emphasis needs to be placed on elucidating and understanding the underlying mechanisms that contribute to fetal outcome. IMPORTANCE Zika virus (ZIKV) transmission has been reported in 87 countries and territories around the globe. ZIKV infection during pregnancy is associated with adverse fetal outcomes, including birth defects, microcephaly, neurological complications, and even spontaneous abortion. Rates of adverse fetal outcomes vary between regions, and not every pregnancy exposed to ZIKV results in birth defects. Not much is known about how or if the infecting ZIKV strain is linked to fetal outcomes. Our research provides evidence of phenotypic heterogeneity between Asian-/American-lineage ZIKV strains and provides insight into the underlying causes of adverse fetal outcomes. Understanding ZIKV strain-dependent pathogenic potential during pregnancy and elucidating underlying causes of diverse clinical sequelae observed during human infections is critical to understanding ZIKV on a global scale.


Subject(s)
Fetus/pathology , Pregnancy Complications, Infectious/virology , Receptor, Interferon alpha-beta/genetics , Zika Virus Infection/immunology , Animals , Disease Models, Animal , Female , Fetus/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/immunology , Zika Virus Infection/congenital
6.
J Virol ; 95(16): e0222020, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076485

ABSTRACT

Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants. IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.


Subject(s)
Placenta/virology , Pregnancy Complications, Infectious/virology , Virus Replication , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Female , Fetal Development , Kinetics , Macaca mulatta , Placenta/pathology , Pregnancy , Zika Virus/classification , Zika Virus/immunology
7.
PLoS Pathog ; 16(10): e1008951, 2020 10.
Article in English | MEDLINE | ID: mdl-33052957

ABSTRACT

Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.


Subject(s)
Aedes/virology , Host-Pathogen Interactions , Mosquito Vectors/virology , Viral Load , Viral Nonstructural Proteins/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Female , Mice , Mice, Knockout , Mutation , Receptor, Interferon alpha-beta/physiology , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication , Zika Virus/classification , Zika Virus/genetics
8.
PLoS Pathog ; 15(8): e1007766, 2019 08.
Article in English | MEDLINE | ID: mdl-31369649

ABSTRACT

Zika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coinfection/virology , Dengue Virus/immunology , Dengue/virology , Zika Virus Infection/virology , Zika Virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Coinfection/blood , Coinfection/complications , Cross Reactions , Dengue/blood , Dengue/complications , Female , Macaca mulatta , Male , Zika Virus Infection/blood , Zika Virus Infection/complications
9.
Biol Reprod ; 102(4): 806-816, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31901091

ABSTRACT

Zika virus (ZIKV) infection is associated with adverse pregnancy outcomes in humans, and infection in the first trimester can lead to miscarriage and stillbirth. Vertical and sexual transmissions of ZIKV have been demonstrated, yet the impact of infection during the initial stages of pregnancy remains unexplored. Here we defined the impact of ZIKV on early embryonic and placental development with a rhesus macaque model. During in vitro fertilization (IVF), macaque gametes were inoculated with a physiologically relevant dose of 5.48log10 plaque-forming units (PFU) of Zika virus/H.sapiens-tc/PUR/2015/PRVABC59_v3c2. Exposure at fertilization did not alter blastocyst formation rates compared to controls. To determine the impact of ZIKV exposure at implantation, hatched blastocysts were incubated with 3.26log10, 4.26log10, or 5.26log10 PFU, or not exposed to ZIKV, followed by extended embryo culture for 10 days. ZIKV exposure negatively impacted attachment, growth, and survival in comparison to controls, with exposure to 5.26log10 PFU ZIKV resulting in embryonic degeneration by day 2. Embryonic secretion of pregnancy hormones was lower in ZIKV-exposed embryos. Increasing levels of infectious virus were detected in the culture media post-exposure, suggesting that the trophectoderm is susceptible to productive ZIKV infection. These results demonstrate that ZIKV exposure severely impacts the zona-free blastocyst, whereas exposure at the time of fertilization does not hinder blastocyst formation. Overall, early stages of pregnancy may be profoundly sensitive to infection and pregnancy loss, and the negative impact of ZIKV infection on pregnancy outcomes may be underestimated.


Subject(s)
Placenta/virology , Pregnancy Complications, Infectious/virology , Zika Virus Infection/virology , Zika Virus , Animals , Blastocyst/virology , Disease Models, Animal , Female , Fertilization in Vitro , Macaca mulatta , Pregnancy , Trophoblasts/virology
10.
PLoS Pathog ; 14(3): e1006964, 2018 03.
Article in English | MEDLINE | ID: mdl-29590202

ABSTRACT

Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.


Subject(s)
Biological Evolution , Gene Library , Infectious Disease Transmission, Vertical , Macaca mulatta/genetics , Mosquito Vectors , Zika Virus Infection/complications , Zika Virus/classification , Animals , Female , High-Throughput Nucleotide Sequencing , Macaca mulatta/virology , Male , Viremia , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/transmission , Zika Virus Infection/virology
11.
PLoS Pathog ; 13(5): e1006378, 2017 May.
Article in English | MEDLINE | ID: mdl-28542585

ABSTRACT

Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10-12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.


Subject(s)
Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , Zika Virus Infection/transmission , Zika Virus/physiology , Amniotic Fluid/virology , Animals , Decidua/pathology , Decidua/virology , Disease Models, Animal , Female , Fetal Development , Fetus , Humans , Lung/pathology , Lung/virology , Macaca mulatta , Placenta/pathology , Placenta/virology , Pregnancy , RNA, Viral/analysis , Spleen/pathology , Spleen/virology , Umbilical Cord/pathology , Umbilical Cord/virology , Viremia , Zika Virus Infection/pathology , Zika Virus Infection/virology
13.
J Virol ; 90(5): 2418-33, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26676771

ABSTRACT

UNLABELLED: Alphaviruses represent a diverse set of arboviruses, many of which are important pathogens. Chikungunya virus (CHIKV), an arthritis-inducing alphavirus, is the cause of a massive ongoing outbreak in the Caribbean and South America. In contrast to CHIKV, other related alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and Semliki Forest virus (SFV), can cause encephalitic disease. E2, the receptor binding protein, has been implicated as a determinant in cell tropism, host range, pathogenicity, and immunogenicity. Previous reports also have demonstrated that E2 contains residues important for host range expansions and monoclonal antibody binding; however, little is known about what role each protein domain (e.g., A, B, and C) of E2 plays on these factors. Therefore, we constructed chimeric cDNA clones between CHIKV and VEEV or SFV to probe the effect of each domain on pathogenicity in vitro and in vivo. CHIKV chimeras containing each of the domains of the E2 (ΔDomA, ΔDomB, and ΔDomC) from SFV, but not VEEV, were successfully rescued. Interestingly, while all chimeric viruses were attenuated compared to CHIKV in mice, ΔDomB virus showed similar rates of infection and dissemination in Aedes aegypti mosquitoes, suggesting differing roles for the E2 protein in different hosts. In contrast to CHIKV; ΔDomB, and to a lesser extent ΔDomA, caused neuron degeneration and demyelination in mice infected intracranially, suggesting a shift toward a phenotype similar to SFV. Thus, chimeric CHIKV/SFV provide insights on the role the alphavirus E2 protein plays on pathogenesis. IMPORTANCE: Chikungunya virus (CHIKV) has caused large outbreaks of acute and chronic arthritis throughout Africa and Southeast Asia and has now become a massive public health threat in the Americas, causing an estimated 1.2 million human cases in just over a year. No approved vaccines or antivirals exist for human use against CHIKV or any other alphavirus. Despite the threat, little is known about the role the receptor binding protein (E2) plays on disease outcome in an infected host. To study this, our laboratory generated chimeric CHIKV containing corresponding regions of the Semliki Forest virus (SFV) E2 (domains A, B, and C) substituted into the CHIKV genome. Our results demonstrate that each domain of E2 likely plays a critical, but dissimilar role in the viral life cycle. Our experiments show that manipulation of E2 domains can be useful for studies on viral pathogenesis and potentially the production of vaccines and/or antivirals.


Subject(s)
Alphavirus Infections/pathology , Chikungunya virus/pathogenicity , Encephalitis Virus, Venezuelan Equine/pathogenicity , Semliki forest virus/pathogenicity , Viral Envelope Proteins/metabolism , Aedes/virology , Alphavirus Infections/virology , Animals , Brain/pathology , Chikungunya virus/genetics , Disease Models, Animal , Encephalitis Virus, Venezuelan Equine/genetics , Female , Male , Mice, Inbred C57BL , Protein Structure, Tertiary , Semliki forest virus/genetics , Viral Envelope Proteins/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
14.
BMC Genomics ; 15: 806, 2014 Sep 20.
Article in English | MEDLINE | ID: mdl-25240600

ABSTRACT

BACKGROUND: The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection. RESULTS: We obtained nearly one billion paired-end RNA sequences from the forebrains of uninfected, acutely and chronically infected mice, then aligned them to the genomic reference files of both T. gondii and Mus musculus. Gene ontology (GO) analysis of the 100 most highly expressed T. gondii genes showed less than half were shared between acute and chronic infection. The majority of the highly expressed genes common in both acute and chronic infection were involved in transcription and translation, underscoring that parasites in both stages are actively synthesizing proteins. Similarly, most of the T. gondii genes highly expressed during chronic infection were involved in metabolic processes, again highlighting the activity of the cyst stage at 28 days post-infection. Comparative analyses of host genes using uninfected forebrain revealed over twice as many immune regulatory genes were more abundant during chronic infection compared to acute. This demonstrates the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. CONCLUSIONS: RNA-seq is a valuable tool to simultaneously analyze host and microbe transcriptomes. Our data shows that T. gondii is metabolically active and synthesizing proteins at 28 days post-infection and that a distinct subset of host genes associated with the immune response are more abundant specifically during chronic infection. These data suggest host and pathogen interplay is still present during chronic infection and provides novel T. gondii targets for future drug and vaccine development.


Subject(s)
Gene Expression Profiling , Toxoplasma/genetics , Toxoplasma/physiology , Toxoplasmosis/genetics , Acute Disease , Animals , Chronic Disease , Gene Ontology , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Time Factors
15.
Antimicrob Agents Chemother ; 58(8): 4486-94, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24867981

ABSTRACT

While ß-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore ß-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to ß-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of ß-lactam antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Listeria monocytogenes/drug effects , Penicillin-Binding Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Wall/drug effects , Cell Wall/metabolism , Cephalosporins/pharmacology , Gene Deletion , Imidazoles/pharmacology , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Penicillins/pharmacology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/pharmacology , Staurosporine/pharmacology , Vancomycin/pharmacology
16.
Article in English | MEDLINE | ID: mdl-38853397

ABSTRACT

AIMS: We investigated the presence of SARS-CoV-2 in free-ranging wildlife populations in Northeastern Minnesota on the Grand Portage Indian Reservation and Isle Royale National Park. METHODS AND RESULTS: One hundred twenty nasal samples were collected from white-tailed deer, moose, grey wolves and black bears monitored for conservation efforts during 2022-2023. Samples were tested for viral RNA by RT-qPCR using the CDC N1/N2 primer set. Our data indicate that no wildlife samples were positive for SARS-CoV-2 RNA. CONCLUSIONS: Continued surveillance is therefore crucial to better understand the changing landscape of zoonotic SARS-CoV-2 in the Upper Midwest.

17.
mBio ; 15(3): e0316023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349142

ABSTRACT

Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE: The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.


Subject(s)
Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Macaca mulatta , Serogroup , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing , Cross Reactions
18.
J Med Entomol ; 50(4): 853-62, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23926785

ABSTRACT

We examined the ability of Culex pipiens L. complex mosquitoes from Argentina to vector West Nile virus (WNV) to assess their role in the transmission of WNV in South America. Several egg rafts of Culex spp. were collected from different breeding sites in the suburbs of the city of La Plata, Argentina, and a subset of each progeny was scored with morphological and genetic species indicators. Surprisingly, we did not find Cx. pipiens form pipiens, but found evidence of genetic hybrids of Culex quinquefasciatus and Cx. pipiens f. molestus. We then used morphological traits to create two colonies predominantly composed of one of these two taxa, although some hybrids are likely to have been included in both. These colonies were used in vector competence studies using NY99 and WN02 genotype strains of WNV obtained in New York State. As controls, we also tested colonies of U.S. Cx. quinquefasciatus and Cx. pipiens f. molestus. Additional Culex larvae from three drainage ditches near the cities of La Plata and Berisso, Argentina, were identified by morphological and high-resolution molecular markers (microsatellites) as Cx. quinquefasciatus Say, Cx. pipiens form molestus, and hybrids. Results indicate that Argentinian Culex are competent but only moderately efficient vectors of WNV and are less susceptible to this virus than comparable U.S. mosquito strains. Studies of vertical transmission of NY99 virus by Cx. pipiens f. molestus hybrids from Argentina yielded a minimal filial infection rate of 1.19 from females feeding during their second and later bloodmeals.


Subject(s)
Culex/genetics , Culex/virology , Genes, Insect , Insect Vectors/genetics , Insect Vectors/virology , West Nile Fever/transmission , Animals , Argentina/epidemiology , Female , Genotype , Larva/genetics , Larva/virology , Male , Microsatellite Repeats , Polymerase Chain Reaction , Pupa/genetics , Pupa/virology , Species Specificity , West Nile Fever/epidemiology , West Nile virus/isolation & purification
19.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425681

ABSTRACT

A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the w Mel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of w Mel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia -infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia . Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia -mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system. Author Summary: When Wolbachia bacteria infect Aedes aegypti mosquitoes, they dramatically reduce the mosquitoes' susceptibility to infection with a range of arthropod-borne viruses, including Zika virus (ZIKV). Although this pathogen-blocking effect has been widely recognized, its mechanisms remain unclear. Furthermore, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to Wolbachia -mediated blocking. Here, we use host transcriptomics and viral genome sequencing to examine the mechanisms of ZIKV pathogen blocking by Wolbachia and viral evolutionary dynamics in Ae. aegypti mosquitoes. We find complex transcriptome patterns that do not suggest a single clear mechanism for pathogen blocking. We also find no evidence that Wolbachia exerts detectable selective pressures on ZIKV in coinfected mosquitoes. Together our data suggest that it may be difficult for ZIKV to evolve Wolbachia resistance, perhaps due to the complexity of the pathogen blockade mechanism.

20.
bioRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993525

ABSTRACT

Zika virus (ZIKV) is now in a post-pandemic period, for which the potential for re-emergence and future spread is unknown. Adding to this uncertainty is the unique capacity of ZIKV to directly transmit between humans via sexual transmission. Recently, we demonstrated that direct transmission of ZIKV between vertebrate hosts leads to rapid adaptation resulting in enhanced virulence in mice and the emergence of three amino acid substitutions (NS2A-A117V, NS2A-A117T, and NS4A-E19G) shared among all vertebrate-passaged lineages. Here, we further characterized these host-adapted viruses and found that vertebrate-passaged viruses also have enhanced transmission potential in mosquitoes. To understand the contribution of genetic changes to the enhanced virulence and transmission phenotype, we engineered these amino acid substitutions, singly and in combination, into a ZIKV infectious clone. We found that NS4A-E19G contributed to the enhanced virulence and mortality phenotype in mice. Further analyses revealed that NS4A-E19G results in increased neurotropism and distinct innate immune signaling patterns in the brain. None of the substitutions contributed to changes in transmission potential in mosquitoes. Together, these findings suggest that direct transmission chains could enable the emergence of more virulent ZIKV strains without compromising mosquito transmission capacity, although the underlying genetics of these adaptations are complex.

SELECTION OF CITATIONS
SEARCH DETAIL