Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000135

ABSTRACT

DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.


Subject(s)
Brain , DNA Damage , DNA Repair , Humans , Brain/metabolism , Animals
2.
Dement Geriatr Cogn Disord ; 45(1-2): 66-78, 2018.
Article in English | MEDLINE | ID: mdl-29694964

ABSTRACT

BACKGROUND: It is increasingly evident that high blood pressure can promote reduction in global and regional brain volumes. While these effects may preferentially affect the hippocampus, reports are inconsistent. METHODS: Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we examined the relationships of hippocampal volume to pulse pressure (PPR) and systolic (SBP) and diastolic (DBP) blood pressure according to apolipoprotein (APOE) ɛ4 positivity and cognitive status. The ADNI data included 1,308 participants: Alzheimer disease (AD = 237), late mild cognitive impairment (LMCI = 454), early mild cognitive impairment (EMCI = 254), and cognitively normal (CN = 365), with up to 24 months of follow-up. RESULTS: Higher quartiles of PPR were significantly associated with lower hippocampal volumes (Q1 vs. Q4, p = 0.034) in the CN and AD groups, but with increasing hippocampal volume (Q1, p = 0.008; Q2, p = 0.020; Q3, p = 0.017; Q4 = reference) in the MCI groups. In adjusted stratified analyses among non-APOE ɛ4 carriers, the effects in the CN (Q1 vs. Q4, p = 0.006) and EMCI groups (Q1, p = 0.002; Q2, p = 0.013; Q3, p = 0.002; Q4 = reference) remained statistically significant. Also, higher DBP was significantly associated with higher hippocampal volume (p = 0.002) while higher SBP was significantly associated with decreasing hippocampal volume in the EMCI group (p = 0.015). CONCLUSION: Changes in PPR, SBP, and DBP differentially influenced hippocampal volumes depending on the cognitive and APOE genotypic categories.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/psychology , Apolipoproteins E/genetics , Blood Pressure , Cognition , Heart Rate , Hippocampus/pathology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Female , Genotype , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Neuropsychological Tests , Prodromal Symptoms
3.
Cell Mol Neurobiol ; 37(6): 969-977, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27858285

ABSTRACT

Neuroinflammation and reactive oxygen species are thought to mediate the pathogenesis of Alzheimer's disease (AD), suggesting that mild cognitive impairment (MCI), a prodromal stage of AD, may be driven by similar insults. Several studies document that hypoxia-inducible factor 1 (HIF-1) is neuroprotective in the setting of neuronal insults, since this transcription factor drives the expression of critical genes that diminish neuronal cell death. HIF-1 facilitates glycolysis and glucose metabolism, thus helping to generate reductive equivalents of NADH/NADPH that counter oxidative stress. HIF-1 also improves cerebral blood flow which opposes the toxicity of hypoxia. Increased HIF-1 activity and/or expression of HIF-1 target genes, such as those involved in glycolysis or vascular flow, may be an early adaptation to the oxidative stressors that characterize MCI pathology. The molecular events that constitute this early adaptation are likely neuroprotective, and might mitigate cognitive decline or the onset of full-blown AD. On the other hand, prolonged or overwhelming stressors can convert HIF-1 into an activator of cell death through agents such as Bnip3, an event that is more likely to occur in late MCI or advanced Alzheimer's dementia.


Subject(s)
Cognitive Dysfunction/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Apoptosis , Cerebrovascular Circulation , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Memory
4.
Int J Neuropsychopharmacol ; 18(7): pyu123, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25556199

ABSTRACT

BACKGROUND: We previously reported increased current density through L-type voltage-gated Ca(2+) (CaV1) channels in inferior colliculus (IC) neurons during alcohol withdrawal. However, the molecular correlate of this increased CaV1 current is currently unknown. METHODS: Rats received three daily doses of ethanol every 8 hours for 4 consecutive days; control rats received vehicle. The IC was dissected at various time intervals following alcohol withdrawal, and the mRNA and protein levels of the CaV1.3 and CaV1.2 α1 subunits were measured. In separate experiments, rats were tested for their susceptibility to alcohol withdrawal-induced seizures (AWS) 3, 24, and 48 hours after alcohol withdrawal. RESULTS: In the alcohol-treated group, AWS were observed 24 hours after withdrawal; no seizures were observed at 3 or 48 hours. No seizures were observed at any time in the control-treated rats. Compared to control-treated rats, the mRNA level of the CaV1.3 α1 subunit was increased 1.4-fold, 1.9-fold, and 1.3-fold at 3, 24, and 48 hours, respectively. In contrast, the mRNA level of the CaV1.2 α1 subunit increased 1.5-fold and 1.4-fold at 24 and 48 hours, respectively. At 24 hours, Western blot analyses revealed that the levels of the CaV1.3 and CaV1.2 α1 subunits increased by 52% and 32%, respectively, 24 hours after alcohol withdrawal. In contrast, the CaV1.2 and CaV1.3 α1 subunits were not altered at either 3 or 48 hours during alcohol withdrawal. CONCLUSIONS: Expression of the CaV1.3 α1 subunit increased in parallel with AWS development, suggesting that altered L-type CaV1.3 channel expression is an important feature of AWS pathogenesis.


Subject(s)
Alcohol Withdrawal Seizures/metabolism , Calcium Channels, L-Type/genetics , Ethanol/toxicity , Inferior Colliculi/cytology , Neurons/metabolism , Alcohol Withdrawal Seizures/chemically induced , Animals , Calcium Channels/genetics , Calcium Channels, L-Type/classification , Central Nervous System Depressants/administration & dosage , Central Nervous System Depressants/toxicity , Ethanol/administration & dosage , Inferior Colliculi/drug effects , Male , RNA, Messenger/drug effects , Rats , Rats, Sprague-Dawley , Time Factors , Up-Regulation/drug effects
5.
Chem Biol Interact ; 403: 111219, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222902

ABSTRACT

Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.

6.
Neuropeptides ; 97: 102307, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36434832

ABSTRACT

Apolipoprotein E (ApoE) is the main cholesterol carrier of the brain and the ε4 gene variant (APOE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD), increasing risk up to 15-fold. Several studies indicate that APOE4 modulates critical factors for neuronal function, including brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Both proteins show exercise-induced upregulation, which is presumed to mediate many of the beneficial effects of physical activity including improved cognition; however, there is variability in results between individuals potentially in-part due to genetic variations including APOE isoform. This study aimed to determine if the two most prevalent human APOE isoforms influence adaptive responses to exercise-training. Targeted replacement mice, homozygous for either APOE3 or APOE4 were randomized into exercised and sedentary groups. Baseline locomotor function and voluntary wheel-running behavior was reduced in APOE4 mice. Exercised groups were subjected to daily treadmill running for 8 weeks. ApoE protein in brain cortex was significantly increased by exercise in both genotypes. PGC-1α mRNA levels in brain cortex were significantly lower in APOE4 mice, and only tended to increase with exercise in both genotypes. Hippocampal BDNF protein were similar between genotypes and was not significantly modulated by treadmill running. Behavioral and biochemical variations between APOE3 and APOE4 mice likely contribute to the differential risk for neurological and vascular diseases and the exercise-induced increase in ApoE levels suggests an added feature of the potential efficacy of physical activity as a preventative and therapeutic strategy for neurogenerative processes in both genotypes.


Subject(s)
Apolipoprotein E4 , Brain-Derived Neurotrophic Factor , Mice , Female , Animals , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/pharmacology , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E3/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Mice, Transgenic , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/pharmacology , Brain/metabolism
7.
Nature ; 444(7117): 337-42, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17086191

ABSTRACT

Resveratrol (3,5,4'-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.


Subject(s)
Energy Intake/physiology , Health , Stilbenes/pharmacology , Acetylation/drug effects , Adenylate Kinase/metabolism , Animals , Insulin/metabolism , Liver/cytology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Obesity/drug therapy , Oligonucleotide Array Sequence Analysis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Resveratrol , Survival Rate , Trans-Activators/metabolism , Transcription Factors
8.
Chem Biol Interact ; 363: 109996, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35654125

ABSTRACT

Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial application of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.


Subject(s)
Medical Countermeasures , Nerve Agents , Organophosphate Poisoning , Animals , Butyrylcholinesterase/chemistry , Humans , Mammals/metabolism , Organophosphate Poisoning/drug therapy , Organophosphorus Compounds , Recombinant Proteins/chemistry
9.
J Neurosci ; 30(29): 9695-707, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20660252

ABSTRACT

Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian nicotinamide-adenine dinucleotide-dependent deacetylase SIRT1 impacts different processes potentially involved in the maintenance of brain integrity, such as chromatin remodeling, DNA repair, cell survival, and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms, we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning, and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knock-out (KO) mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but displayed a decrease in dendritic branching, branch length, and complexity of neuronal dendritic arbors. Also, a decrease in extracellular signal-regulated kinase 1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism, and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory, and synaptic plasticity in mice.


Subject(s)
Cognition/physiology , Hippocampus/physiology , Learning/physiology , Long-Term Potentiation/genetics , Memory/physiology , Neurons/metabolism , Sirtuin 1/genetics , Animals , Dendritic Spines/ultrastructure , Gene Expression Regulation , Hippocampus/cytology , Mice , Mice, Knockout , Neurons/chemistry , Patch-Clamp Techniques , Sirtuin 1/analysis , Tissue Distribution
10.
Behav Brain Res ; 378: 112156, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31593790

ABSTRACT

Women are at greater risk than men for developing posttraumatic stress disorder (PTSD) after trauma exposure. Sleep, especially rapid-eye-movement sleep (REMS), has been considered a contributing factor to the development of PTSD symptoms through its effects on the processing of emotional memories. However, it remains unknown if sex and sex hormones play a role in the hypothesized impact of sleep on the development of PTSD. Animal models have methodological advantages over human studies in investigating this research question; however, animal models of sleep in PTSD have been tested only with males. C57BL/6 mice (7 males and 15 females) were exposed to 15 footshocks in a footshock chamber, and 5 min after the last footshock, were returned to their home cages for telemetric electroencephalographic sleep recording. Nine to thirteen days later, mice were returned to the footshock chamber for 10 min without footshocks. Fear recall rates were computed by comparing freezing behaviors in the footshock chamber immediately after the footshocks to those during fear context reexposure. Males had significantly lower recall rates compared to metestrous females (that received footshocks on metestrus). Overall, males slept more than both proestrous females (that received footshocks on proestrus) and metestrous females during the dark period. Regression analyses revealed that average REMS episode durations after footshocks were differentially associated with recall rates across groups, such that the association was positive in males, but negative in proestrous females. Results suggest that both sex and the estrous cycle modulate the associations between REMS continuity and fear memory consolidation.


Subject(s)
Conditioning, Classical/physiology , Estrous Cycle/physiology , Fear/physiology , Memory Consolidation/physiology , Mental Recall/physiology , Sex Characteristics , Sleep Stages/physiology , Animals , Behavior, Animal/physiology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Stress Disorders, Post-Traumatic/physiopathology
11.
Mol Cell Endocrinol ; 299(1): 58-63, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19010386

ABSTRACT

Calorie restriction (CR) is a non-genetic manipulation that reliably results in extended lifespan of several species ranging from yeast to dogs. The lifespan extension effect of CR has been strongly associated with an increased level and activation of the silent information regulator 2 (Sir2) histone deacetylase and its mammalian ortholog Sirt1. This association led to the search for potential Sirt1-activating, life-extending molecules. This review briefly outlines the experimental findings on resveratrol and other dietary activators of Sirt1.


Subject(s)
Diet , Sirtuins/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Caloric Restriction , Dietary Supplements , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Enzyme Activation/drug effects , Flavonoids/pharmacology , Histone Deacetylases/metabolism , Humans , Phenols/pharmacology , Polyphenols , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Vertebrates/metabolism , Vertebrates/physiology
12.
Clin Interv Aging ; 14: 2115-2123, 2019.
Article in English | MEDLINE | ID: mdl-31824142

ABSTRACT

PURPOSE: Poor cardiorespiratory fitness (CRF) is linked to cognitive deterioration, but its effects on lipid heterogeneity and functional properties in older African American (AA) subjects with mild cognitive impairment (MCI) need elucidation. This study determined whether exercise training-induced changes in blood lipid particle sizes (LPS) were associated with CRF determined by VO2Max in elderly AAs with MCI. Given the pivotal role of brain-derived neurotrophic factor (BDNF) on glucose metabolism, and therefore, "diabetic dyslipidemia", we also determined whether changes in LPS were associated with the levels of serum BDNF. METHODS: This analysis included 17 of the 29 randomized elderly AAs with MCI who had NMR data at baseline and after a 6-month training. We used Generalized Linear Regression (GLM) models to examine cardiorespiratory fitness (VO2Max) effects on training-induced change in LPS in the stretch and aerobic groups. Additionally, we determined whether the level of BDNF influenced change in LPS. RESULTS: Collectively, mean VO2Max (23.81±6.17) did not differ significantly between aerobic and stretch groups (difference=3.17±3.56, P=0.495). Training-related changes in very low-density lipoprotein, chylomicrons, and total low-density lipoprotein (LDL) particle sizes correlated significantly with VO2Max, but not after adjustment for age and gender. However, increased VO2Max significantly associated with reduced total LDL particle size after similar adjustments (P = 0.046). While stretch exercise associated with increased protective large high-density lipoprotein particle size, the overall effect was not sustained following adjustments for gender and age. However, changes in serum BDNF were associated with changes in triglyceride and cholesterol transport particle sizes (P < 0.051). CONCLUSION: Promotion of stretch and aerobic exercise to increase CRF in elderly AA volunteers with MCI may also promote beneficial changes in lipoprotein particle profile. Because high BDNF concentration may reduce CVD risk, training-related improvements in BDNF levels are likely advantageous. Large randomized studies are needed to confirm our observations and to further elucidate the role for exercise therapy in reducing CVD risk in elderly AAs with MCI.


Subject(s)
Black or African American , Cognitive Dysfunction , Exercise , Lipoproteins, LDL/blood , Lipoproteins, LDL/physiology , Magnetic Resonance Spectroscopy , Aged , Brain-Derived Neurotrophic Factor , Cardiovascular Diseases , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pilot Projects , Triglycerides/blood
13.
Neuropeptides ; 41(5): 329-37, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17590434

ABSTRACT

Hypocretin (Hcrt, also known as orexin) is a hypothalamic neuropeptide linked to narcolepsy, a disorder diagnosed by the appearance of rapid eye-movement sleep (REMS)-state characteristics during waking. Major targets of Hcrt-containing fibers include the locus coeruleus and the raphe nucleus, areas with important roles in regulation of mood and sleep. A relationship between REMS and mood is suggested by studies demonstrating that REMS-deprivation (REMSD) ameliorates depressive symptoms in humans. Additional support is found in animal studies where antidepressants and REMSD have similar effects on monoamiergic systems thought to be involved in major depression. Recently, we have reported that Wistar-Kyoto (WKY) rats, an animal model of depression, have reduced number and size of hypothalamic cells expressing Hcrt-immunoractivity compared to the parent, Wistar (WIS) strain, suggesting the possibility that the depressive-like attributes of the WKY rat may be determined by this relative reduction in Hcrt cells [Allard, J.S., Tizabi, Y., Shaffery, J.P., Trouth, C.O., Manaye, K., 2004. Stereological analysis of the hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides 38, 311-315]. In this study, we sought to test the hypothesis that REMSD would result in a greater increase in the number and/or size of hypothalamic, Hcrt-immunoreactive (Hcrt-ir) neurons in WKY, compared to WIS rats. The effect of REMSD, using the multiple-small-platforms-over-water (SPRD) method, on size and number of Hcrt-ir cells were compared within and across strains of rats that experienced multiple-large-platforms-over-water (LPC) as well as to those in a normal, home-cage-control (CC) setting. In accord with previous findings, the number of Hcrt-ir cells was larger in all three WIS groups compared to the respective WKY groups. REMSD produced a 20% increase (p<0.02) in the number of hypothalamic Hcrt-ir neurons in WKY rats compared to cage control WKY (WKY-CC) animals. However, an unexpected higher increase in number of Hcrt-ir cells was also observed in the WKY-LPC group compared to both WKY-CC (31%, p<0.001) and WKY-SPRD (20%, p<0.002) rats. A similar, smaller, but non-significant, pattern of change was noted in WIS-LPC group. Overall the data indicate a differential response to environmental manipulations where WKY rats appear to be more reactive than WIS rats. Moreover, the findings do not support direct antidepressant-like activity for REMSD on hypothalamic Hcrt neurons in WKY rats.


Subject(s)
Depression/physiopathology , Hypothalamus/physiopathology , Intracellular Signaling Peptides and Proteins/physiology , Neurons/physiology , Neuropeptides/physiology , Sleep Deprivation , Sleep, REM/physiology , Animals , Body Weight , Disease Models, Animal , Male , Orexins , Rats , Rats, Inbred WKY , Rats, Wistar
14.
Exp Gerontol ; 87(Pt A): 129-136, 2017 01.
Article in English | MEDLINE | ID: mdl-27864047

ABSTRACT

Possession of the Apolipoprotein E (APOE) gene ε4 allele is the most prevalent genetic risk factor for late onset Alzheimer's disease (AD). Recent evidence suggests that APOE genotype differentially affects the expression of brain-derived neurotrophic factor (BDNF). Notably, aerobic exercise-induced upregulation of BDNF is well documented; and exercise has been shown to improve cognitive function. As BDNF is known for its role in neuroplasticity and survival, its upregulation is a proposed mechanism for the neuroprotective effects of physical exercise. In this pilot study designed to analyze exercise-induced BDNF upregulation in an understudied population, we examined the effects of APOEε4 (ε4) carrier status on changes in BDNF expression after a standardized exercise program. African Americans, age 55years and older, diagnosed with mild cognitive impairment participated in a six-month, supervised program of either stretch (control treatment) or aerobic (experimental treatment) exercise. An exercise-induced increase in VO2Max was detected only in male participants. BDNF levels in serum were measured using ELISA. Age, screening MMSE scores and baseline measures of BMI, VO2Max, and BDNF did not differ between ε4 carriers and non-ε4 carriers. A significant association between ε4 status and serum BDNF levels was detected. Non-ε4 carriers showed a significant increase in BDNF levels at the 6month time point while ε4 carriers did not. We believe we have identified a relationship between the ε4 allele and BDNF response to physiologic adaptation which likely impacts the extent of neuroprotective benefit gained from engagement in physical exercise. Replication of our results with inclusion of diverse racial cohorts, and a no-exercise control group will be necessary to determine the scope of this association in the general population.


Subject(s)
Apolipoprotein E4/genetics , Black or African American/genetics , Brain-Derived Neurotrophic Factor/blood , Cognitive Dysfunction/genetics , Cognitive Dysfunction/therapy , Exercise/physiology , Aged , Aged, 80 and over , Alleles , Cognition/physiology , Exercise Therapy/methods , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Pilot Projects
15.
Ageing Res Rev ; 5(2): 125-43, 2006 May.
Article in English | MEDLINE | ID: mdl-16644290

ABSTRACT

Aging is a physiological process that involves a multi-factorial set of deleterious changes. These alterations are caused by an exponential increase in damage to macromolecules. This process is likely due to the cumulative effects of oxidative stress over time. One area of ongoing research in gerontology has focused on determining why there is an age-dependent decrease in cellular bioenergetics. The aim of this review is to summarize the recent findings on the effects of aging and calorie restriction on energy metabolism. The effect of calorie restriction on age-associated changes in bioenergetic parameters will be examined.


Subject(s)
Aging/physiology , Caloric Restriction , Energy Metabolism/physiology , Animals , Humans , Mitochondria/physiology , Models, Biological
16.
J Chem Neuroanat ; 76(Pt B): 122-132, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26939765

ABSTRACT

The experience of early life stress can trigger complex neurochemical cascades that influence emotional and addictive behaviors later in life in both adolescents and adults. Recent evidence suggests that excessive alcohol drinking and drug-seeking behavior, in general, are co-morbid with depressive-like behavior. Both behaviors are reported in humans exposed to early life adversity, and are prominent features recapitulated in animal models of early life stress (ELS) exposure. Currently, little is known about whether or how ELS modulates reward system nuclei. In this study we use operant conditioning of rats to show that the maternal separation stress (MS) model of ELS consumes up to 3-fold greater quantities of 10% vol/vol EtOH in 1-h, consistently over a 3-week period. This was correlated with a significant 22% reduction in the number of dopaminergic-like neurons in the VTA of naïve MS rats, similar to genetically alcohol-preferring (P) rats which show a 35% reduction in tyrosine hydroxylase (TH)-positive dopaminergic neurons in the VTA. MS rats had a significantly higher 2-fold immobility time in the forced swim test (FST) and reduced sucrose drinking compared to controls, indicative of depressive-like symptomology and anhedonia. Consistent with this finding, stereological analysis revealed that amygdala neurons were 25% greater in number at P70 following MS exposure. Our previous examination of the dentate gyrus of hippocampus, a region involved in encoding emotional memory, revealed fewer dentate gyrus neurons after MS, but we now report this reduction in neurons occurs without effect on the number of astrocytes or length of astrocytic fibers. These data indicate that MS animals exhibit neuroanatomical changes in reward centers similar to those reported for high alcohol drinking rats, but aspects of astrocyte morphometry remained unchanged. These data are of high relevance to understand the breadth of neuronal pathology that ensues in reward loci following ELS.

17.
Behav Brain Res ; 301: 1-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26698400

ABSTRACT

Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin's effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation.


Subject(s)
Aging/drug effects , Brain/drug effects , Cognition/drug effects , Hypoglycemic Agents/adverse effects , Metformin/adverse effects , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Adipose Tissue/drug effects , Aging/physiology , Aging/psychology , Animals , Blood Glucose/drug effects , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Diet, High-Fat/adverse effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice, Inbred C57BL , Motor Activity/drug effects , Nerve Growth Factor/metabolism , Neurotrophin 3/metabolism , RNA, Messenger/metabolism , Random Allocation
18.
Aging (Albany NY) ; 8(5): 899-916, 2016 05.
Article in English | MEDLINE | ID: mdl-27070252

ABSTRACT

Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress.


Subject(s)
Cerebral Cortex/drug effects , Diet, High-Fat , Dietary Sucrose , Neuroprotective Agents/pharmacology , Stilbenes/pharmacology , Animals , Apoptosis/drug effects , Cerebral Cortex/metabolism , Gene Expression Profiling , Inflammation/metabolism , Macaca mulatta , Male , NF-kappa B/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Resveratrol
19.
J Appl Physiol (1985) ; 98(4): 1387-95, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15557013

ABSTRACT

A central neuronal network that regulates respiration may include hypothalamic neurons that produce orexin, a peptide that influences sleep and arousal. In these experiments, we investigated 1) projections of orexin-containing neurons to the pre-Botzinger region of the rostral ventrolateral medulla that regulates rhythmic breathing and to phrenic motoneurons that innervate the diaphragm; 2) the presence of orexin A receptors in the pre-Botzinger region and in phrenic motoneurons; and 3) physiological effects of orexin administered into the pre-Botzinger region and phrenic nuclei at the C3-C4 levels. We found orexin-containing fibers within the pre-Botzinger complex. However, only 0.5% of orexin-containing neurons projected to the pre-Botzinger region, whereas 2.9% of orexin-containing neurons innervated the phrenic nucleus. Neurons of the pre-Botzinger region and phrenic nucleus stained for orexin receptors, and activation of orexin receptors by microperfusion of orexin in either site produced a dose-dependent, significant (P <0.05) increase in diaphragm electromyographic activity. These data indicate that orexin regulates respiratory activity and may have a role in the pathophysiology of sleep-related respiratory disorders.


Subject(s)
Intracellular Signaling Peptides and Proteins/administration & dosage , Medulla Oblongata/physiology , Motor Neurons/physiology , Neural Pathways/physiology , Neuropeptides/administration & dosage , Phrenic Nerve/physiology , Receptors, Neuropeptide/metabolism , Respiration/drug effects , Spinal Cord/physiology , Animals , Arousal/drug effects , Arousal/physiology , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/physiology , Male , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Motor Neurons/cytology , Motor Neurons/drug effects , Neural Pathways/cytology , Neural Pathways/drug effects , Orexin Receptors , Orexins , Phrenic Nerve/cytology , Phrenic Nerve/drug effects , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled , Spinal Cord/cytology , Spinal Cord/drug effects
20.
Exp Gerontol ; 69: 159-69, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25981742

ABSTRACT

There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.


Subject(s)
Cognitive Dysfunction , Exercise , Inflammation/genetics , Muscle Stretching Exercises/methods , Nervous System Physiological Phenomena/genetics , Oxygen Consumption/physiology , Aged , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/therapy , Down-Regulation , Exercise/physiology , Exercise/psychology , Female , Gene Expression Profiling/methods , Genome-Wide Association Study , Humans , Male , Statistics as Topic , Treatment Outcome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL