Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Immunity ; 46(1): 51-64, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28099864

ABSTRACT

Despite the importance of programmed cell death-1 (PD-1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT-rich sequence-binding protein-1 (Satb1) restrains PD-1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40-fold increase in PD-1 expression. Tumor-derived transforming growth factor ß (Tgf-ß) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1-NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1-mediated repression, Satb1-deficient tumor-reactive T cells lost effector activity more rapidly than wild-type lymphocytes at tumor beds expressing PD-1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor-infiltrating T cells results in diminished anti-tumor immunity.


Subject(s)
Epigenetic Repression/immunology , Gene Expression Regulation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Attachment Region Binding Proteins/biosynthesis , Programmed Cell Death 1 Receptor/biosynthesis , Animals , Enzyme-Linked Immunospot Assay , Humans , Immunoprecipitation , Lymphocyte Activation/immunology , Matrix Attachment Region Binding Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/metabolism
2.
Immunity ; 41(3): 427-439, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25238097

ABSTRACT

Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-ß (TGF-ß), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-ß-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-ß signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.


Subject(s)
Forkhead Transcription Factors/immunology , Neoplasms/immunology , Repressor Proteins/immunology , T-Lymphocytes, Cytotoxic/immunology , Transforming Growth Factor beta/immunology , Tumor Escape/immunology , Adoptive Transfer , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Granzymes/biosynthesis , Interferon-gamma/biosynthesis , JNK Mitogen-Activated Protein Kinases/biosynthesis , JNK Mitogen-Activated Protein Kinases/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Signal Transduction/immunology , Smad2 Protein/immunology , Smad3 Protein/immunology , T-Lymphocytes, Cytotoxic/transplantation , Transcription, Genetic , Transcriptional Activation , Tumor Microenvironment/immunology
3.
Front Immunol ; 13: 886429, 2022.
Article in English | MEDLINE | ID: mdl-35720306

ABSTRACT

In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.


Subject(s)
Hematologic Neoplasms , Neoplasms , Hematologic Neoplasms/etiology , Humans , Immunotherapy , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural , Tumor Microenvironment
4.
J Leukoc Biol ; 103(5): 799-805, 2018 05.
Article in English | MEDLINE | ID: mdl-29537705

ABSTRACT

Due to their cytotoxic activities, many anticancer drugs cause extensive damage to the intestinal mucosa and have antibiotic activities. Here, we show that cisplatin induces significant changes in the repertoire of intestinal commensal bacteria that exacerbate mucosal damage. Restoration of the microbiota through fecal-pellet gavage drives healing of cisplatin-induced intestinal damage. Bacterial translocation to the blood stream is correspondingly abrogated, resulting in a significant reduction in systemic inflammation, as evidenced by decreased serum IL-6 and reduced mobilization of granulocytes. Mechanistically, reversal of dysbiosis in response to fecal gavage results in the production of protective mucins and mobilization of CD11b+ myeloid cells to the intestinal mucosa, which promotes angiogenesis. Administration of Ruminococcus gnavus, a bacterial strain selectively depleted by cisplatin treatment, could only partially restore the integrity of the intestinal mucosa and reduce systemic inflammation, without measurable increases in the accumulation of mucin proteins. Together, our results indicate that reconstitution of the full repertoire of intestinal bacteria altered by cisplatin treatment accelerates healing of the intestinal epithelium and ameliorates systemic inflammation. Therefore, fecal microbiota transplant could paradoxically prevent life-threatening bacteremia in cancer patients treated with chemotherapy.


Subject(s)
Cisplatin/pharmacology , Dysbiosis/therapy , Fecal Microbiota Transplantation , Intestines/microbiology , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Dysbiosis/mortality , Dysbiosis/pathology , Female , Gastrointestinal Microbiome , Intestines/drug effects , Intestines/pathology , Ovarian Neoplasms/microbiology , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/microbiology , Peritoneal Neoplasms/pathology , Tumor Cells, Cultured
5.
Clin Cancer Res ; 24(21): 5347-5356, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29898988

ABSTRACT

Purpose: We have shown that the aged microenvironment increases melanoma metastasis, and decreases response to targeted therapy, and here we queried response to anti-PD1.Experimental Design: We analyzed the relationship between age, response to anti-PD1, and prior therapy in 538 patients. We used mouse models of melanoma, to analyze the intratumoral immune microenvironment in young versus aged mice and confirmed our findings in human melanoma biopsies.Results: Patients over the age of 60 responded more efficiently to anti-PD-1, and likelihood of response to anti-PD-1 increased with age, even when we controlled for prior MAPKi therapy. Placing genetically identical tumors in aged mice (52 weeks) significantly increased their response to anti-PD1 as compared with the same tumors in young mice (8 weeks). These data suggest that this increased response in aged patients occurs even in the absence of a more complex mutational landscape. Next, we found that young mice had a significantly higher population of regulatory T cells (Tregs), skewing the CD8+:Treg ratio. FOXP3 staining of human melanoma biopsies revealed similar increases in Tregs in young patients. Depletion of Tregs using anti-CD25 increased the response to anti-PD1 in young mice.Conclusions: While there are obvious limitations to our study, including our inability to conduct a meta-analysis due to a lack of available data, and our inability to control for mutational burden, there is a remarkable consistency in these data from over 500 patients across 8 different institutes worldwide. These results stress the importance of considering age as a factor for immunotherapy response. Clin Cancer Res; 24(21); 5347-56. ©2018 AACR See related commentary by Pawelec, p. 5193.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Immunomodulation/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Age Factors , Animals , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Transgenic , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
6.
Trends Cancer ; 3(1): 19-27, 2017 01.
Article in English | MEDLINE | ID: mdl-28718424

ABSTRACT

Small-molecule inhibitors offer great promise for targeting pathways that are specifically deregulated in different tumors. However, such 'targeted' therapies also elicit poorly understood effects on protective antitumor immunity. Given the emerging relevance of immunotherapies that boost pre-existing T cell responses, understanding how different immune cells are affected by small-molecule inhibitors could lead to more-effective interventions, alone or combined with immunotherapy. This review discusses the growing array of activities elicited by multiple 'targeted' inhibitors on antitumor immunity, underscoring the complex effects resulting from diverse activities on different immune cell types in vivo, and the need to conduct mechanistic research that identifies drugs performing well not only in immunocompromised mice but also in the presence of spontaneous or therapeutic antitumor immunity.


Subject(s)
Immunosuppression Therapy , Neoplasms/drug therapy , Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Molecular Targeted Therapy , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Microenvironment/drug effects
7.
Oncotarget ; 8(65): 109151-109160, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29312597

ABSTRACT

Mounting evidence demonstrates that CD8+CD122+ T cells have suppressive properties with the capacity to inhibit T cell responses. Therefore, these cells are rational targets for cancer immunotherapy. Here, we demonstrate that CD122 monoclonal antibody (mAb; aCD122) therapy significantly suppressed tumor growth and improved long-term survival in tumor-bearing mice. This therapeutic effect correlated with enhanced polyfunctional, cytolytic intratumoral CD8+ T cells and a decrease in granulocytic myeloid-derived suppressor cells (G-MDSCs). In addition, aCD122 treatment synergized with a vaccine to augment vaccine-induced antigen (Ag)-specific CD8+ T cell responses, reject established tumors and generate memory T cells. Furthermore, aCD122 mAb synergized with an anti-GITR (aGITR) mAb to confer significant control of tumor growth. These results suggest CD122 might be a promising target for cancer immunotherapy, either as a single agent or in combination with other forms of immunotherapy.

8.
Clin Cancer Res ; 23(2): 441-453, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27435394

ABSTRACT

PURPOSE: To define the safety and effectiveness of T cells redirected against follicle-stimulating hormone receptor (FSHR)-expressing ovarian cancer cells. EXPERIMENTAL DESIGN: FSHR expression was determined by Western blotting, immunohistochemistry, and qPCR in 77 human ovarian cancer specimens from 6 different histologic subtypes and 20 human healthy tissues. The effectiveness of human T cells targeted with full-length FSH in vivo was determined against a panel of patient-derived xenografts. Safety and effectiveness were confirmed in immunocompetent tumor-bearing mice, using constructs targeting murine FSHR and syngeneic T cells. RESULTS: FSHR is expressed in gynecologic malignancies of different histologic types but not in nonovarian healthy tissues. Accordingly, T cells expressing full-length FSHR-redirected chimeric receptors mediate significant therapeutic effects (including tumor rejection) against a panel of patient-derived tumors in vivo In immunocompetent mice growing syngeneic, orthotopic, and aggressive ovarian tumors, fully murine FSHR-targeted T cells also increased survival without any measurable toxicity. Notably, chimeric receptors enhanced the ability of endogenous tumor-reactive T cells to abrogate malignant progression upon adoptive transfer into naïve recipients subsequently challenged with the same tumor. Interestingly, FSHR-targeted T cells persisted as memory lymphocytes without noticeable PD-1-dependent exhaustion during end-stage disease, in the absence of tumor cell immunoediting. However, exosomes in advanced tumor ascites diverted the effector activity of this and other chimeric receptor-transduced T cells away from targeted tumor cells. CONCLUSIONS: T cells redirected against FSHR+ tumor cells with full-length FSH represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate targets in tumor-free ovaries. Clin Cancer Res; 23(2); 441-53. ©2016 AACR.


Subject(s)
Immunotherapy , Ovarian Neoplasms/therapy , Receptors, FSH/immunology , T-Lymphocytes/immunology , Animals , Ascites/immunology , Ascites/pathology , Exosomes/immunology , Exosomes/pathology , Female , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunohistochemistry , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, FSH/genetics , Xenograft Model Antitumor Assays
9.
Cancer Discov ; 7(1): 72-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27694385

ABSTRACT

The role of estrogens in antitumor immunity remains poorly understood. Here, we show that estrogen signaling accelerates the progression of different estrogen-insensitive tumor models by contributing to deregulated myelopoiesis by both driving the mobilization of myeloid-derived suppressor cells (MDSC) and enhancing their intrinsic immunosuppressive activity in vivo Differences in tumor growth are dependent on blunted antitumor immunity and, correspondingly, disappear in immunodeficient hosts and upon MDSC depletion. Mechanistically, estrogen receptor alpha activates the STAT3 pathway in human and mouse bone marrow myeloid precursors by enhancing JAK2 and SRC activity. Therefore, estrogen signaling is a crucial mechanism underlying pathologic myelopoiesis in cancer. Our work suggests that new antiestrogen drugs that have no agonistic effects may have benefits in a wide range of cancers, independently of the expression of estrogen receptors in tumor cells, and may synergize with immunotherapies to significantly extend survival. SIGNIFICANCE: Ablating estrogenic activity delays malignant progression independently of the tumor cell responsiveness, owing to a decrease in the mobilization and immunosuppressive activity of MDSCs, which boosts T-cell-dependent antitumor immunity. Our results provide a mechanistic rationale to block estrogen signaling with newer antagonists to boost the effectiveness of anticancer immunotherapies. Cancer Discov; 7(1); 72-85. ©2016 AACR.See related commentary by Welte et al., p. 17This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Animals , Cell Line, Tumor , Disease Progression , Female , Humans , Janus Kinase 2/metabolism , MCF-7 Cells , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Neoplasm Transplantation , Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , src-Family Kinases/metabolism
10.
Cell Rep ; 16(11): 2829-2837, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27626654

ABSTRACT

Restoration of anti-tumor immunity by blocking PD-L1 signaling through the use of antibodies has proven to be beneficial in cancer therapy. Here, we show that BET bromodomain inhibition suppresses PD-L1 expression and limits tumor progression in ovarian cancer. CD274 (encoding PD-L1) is a direct target of BRD4-mediated gene transcription. In mouse models, treatment with the BET inhibitor JQ1 significantly reduced PD-L1 expression on tumor cells and tumor-associated dendritic cells and macrophages, which correlated with an increase in the activity of anti-tumor cytotoxic T cells. The BET inhibitor limited tumor progression in a cytotoxic T-cell-dependent manner. Together, these data demonstrate a small-molecule approach to block PD-L1 signaling. Given the fact that BET inhibitors have been proven to be safe with manageable reversible toxicity in clinical trials, our findings indicate that pharmacological BET inhibitors represent a treatment strategy for targeting PD-L1 expression.


Subject(s)
Azepines/pharmacology , B7-H1 Antigen/genetics , Immunity/drug effects , Neoplasms/immunology , Neoplasms/metabolism , Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , B7-H1 Antigen/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Disease Progression , Female , Humans , Mice, Inbred C57BL , Neoplasms/pathology , Nuclear Proteins/metabolism , Proteins/metabolism , T-Lymphocytes, Cytotoxic/drug effects , Time Factors , Transcription Factors/metabolism , Transcription, Genetic/drug effects
11.
Cancer Res ; 76(21): 6253-6265, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803104

ABSTRACT

Targeted therapies elicit seemingly paradoxical and poorly understood effects on tumor immunity. Here, we show that the MEK inhibitor trametinib abrogates cytokine-driven expansion of monocytic myeloid-derived suppressor cells (mMDSC) from human or mouse myeloid progenitors. MEK inhibition also reduced the production of the mMDSC chemotactic factor osteopontin by tumor cells. Together, these effects reduced mMDSC accumulation in tumor-bearing hosts, limiting the outgrowth of KRas-driven breast tumors, even though trametinib largely failed to directly inhibit tumor cell proliferation. Accordingly, trametinib impeded tumor progression in vivo through a mechanism requiring CD8+ T cells, which was paradoxical given the drug's reported ability to inhibit effector lymphocytes. Confirming our observations, adoptive transfer of tumor-derived mMDSC reversed the ability of trametinib to control tumor growth. Overall, our work showed how the effects of trametinib on immune cells could partly explain its effectiveness, distinct from its activity on tumor cells themselves. More broadly, by providing a more incisive view into how MEK inhibitors may act against tumors, our findings expand their potential uses to generally block mMDSC expansion, which occurs widely in cancers to drive their growth and progression. Cancer Res; 76(21); 6253-65. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Mutation , Myelopoiesis/drug effects , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Pyridones/pharmacology , Pyrimidinones/pharmacology , T-Lymphocytes/physiology , Animals , Cell Line, Tumor , Female , Humans , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/physiology , Neoplasms/genetics , Neoplasms/physiopathology , Osteopontin/biosynthesis
12.
Cancer Res ; 76(9): 2561-72, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26980764

ABSTRACT

Many signal transduction inhibitors are being developed for cancer therapy target pathways that are also important for the proper function of antitumor lymphocytes, possibly weakening their therapeutic effects. Here we show that most inhibitors targeting multiple signaling pathways have especially strong negative effects on T-cell activation at their active doses on cancer cells. In particular, we found that recently approved MEK inhibitors displayed potent suppressive effects on T cells in vitro However, these effects could be attenuated by certain cytokines that can be administered to cancer patients. Among them, clinically available IL15 superagonists, which can activate PI3K selectively in T lymphocytes, synergized with MEK inhibitors in vivo to elicit potent and durable antitumor responses, including by a vaccine-like effect that generated resistance to tumor rechallenge. Our work identifies a clinically actionable approach to overcome the T-cell-suppressive effects of MEK inhibitors and illustrates how to reconcile the deficiencies of signal transduction inhibitors, which impede desired immunologic effects in vivo Cancer Res; 76(9); 2561-72. ©2016 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Neoplasms, Experimental/pathology , Proteins/pharmacology , Animals , Blotting, Western , Cell Line, Tumor , Flow Cytometry , High-Throughput Screening Assays , Humans , Interleukin-15 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Recombinant Fusion Proteins , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
Cell Rep ; 14(7): 1774-1786, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26876172

ABSTRACT

Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.


Subject(s)
Dendritic Cells/immunology , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class II/immunology , Matrix Attachment Region Binding Proteins/immunology , Ovarian Neoplasms/immunology , Animals , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic , Dendritic Cells/pathology , Female , Galectin 1/genetics , Galectin 1/immunology , Histocompatibility Antigens Class II/genetics , Histones/genetics , Histones/immunology , Humans , Immune Tolerance , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Matrix Attachment Region Binding Proteins/antagonists & inhibitors , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Knockout , Neoplasm Transplantation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology
14.
Cancer Cell ; 27(1): 27-40, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25533336

ABSTRACT

The dominant TLR5(R392X) polymorphism abrogates flagellin responses in >7% of humans. We report that TLR5-dependent commensal bacteria drive malignant progression at extramucosal locations by increasing systemic IL-6, which drives mobilization of myeloid-derived suppressor cells (MDSCs). Mechanistically, expanded granulocytic MDSCs cause γδ lymphocytes in TLR5-responsive tumors to secrete galectin-1, dampening antitumor immunity and accelerating malignant progression. In contrast, IL-17 is consistently upregulated in TLR5-unresponsive tumor-bearing mice but only accelerates malignant progression in IL-6-unresponsive tumors. Importantly, depletion of commensal bacteria abrogates TLR5-dependent differences in tumor growth. Contrasting differences in inflammatory cytokines and malignant evolution are recapitulated in TLR5-responsive/unresponsive ovarian and breast cancer patients. Therefore, inflammation, antitumor immunity, and the clinical outcome of cancer patients are influenced by a common TLR5 polymorphism.


Subject(s)
Interleukin-17/metabolism , Interleukin-6/metabolism , Microbiota , Neoplasms/immunology , Neoplasms/pathology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Galectin 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Neoplasm Transplantation , Polymorphism, Single Nucleotide , Signal Transduction
15.
J Vis Exp ; (85)2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24748051

ABSTRACT

Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αß and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.


Subject(s)
Disease Models, Animal , Mammary Neoplasms, Experimental/pathology , Adenoviridae/genetics , Alleles , Animals , Female , Genes, p53 , Genes, ras , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic
16.
Front Immunol ; 4: 435, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24339824

ABSTRACT

A common characteristic of solid tumors is the pathological recruitment of immunosuppressive myeloid cells, which in certain tumors includes dendritic cells (DCs). DCs are of particular interest in the field of cancer immunotherapy because they induce potent and highly specific anti-tumor immune responses, particularly in the early phase of tumorigenesis. However, as tumors progress, these cells can be transformed into regulatory cells that contribute to an immunosuppressive microenvironment favoring tumor growth. Therefore, controlling DC phenotype has the potential to elicit effective anti-tumor responses while simultaneously weakening the tumor's ability to protect itself from immune attack. This review focuses on the dual nature of DCs in the tumor microenvironment, the regulation of DC phenotype, and the prospect of modifying DCs in situ as a novel immunotherapeutic approach.

SELECTION OF CITATIONS
SEARCH DETAIL