Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Theor Appl Genet ; 133(7): 2213-2226, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32313991

ABSTRACT

KEY MESSAGE: One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.


Subject(s)
Gene Pool , Genome, Plant , Ploidies , Polymorphism, Single Nucleotide , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Genetic Linkage , Genetic Markers , Genotype , Phenotype , Physical Chromosome Mapping , Poaceae/genetics , Synteny
2.
Plant Biotechnol J ; 16(4): 867-876, 2018 04.
Article in English | MEDLINE | ID: mdl-28913866

ABSTRACT

Wheat breeders and academics alike use single nucleotide polymorphisms (SNPs) as molecular markers to characterize regions of interest within the hexaploid wheat genome. A number of SNP-based genotyping platforms are available, and their utility depends upon factors such as the available technologies, number of data points required, budgets and the technical expertise required. Unfortunately, markers can rarely be exchanged between existing and newly developed platforms, meaning that previously generated data cannot be compared, or combined, with more recently generated data sets. We predict that genotyping by sequencing will become the predominant genotyping technology within the next 5-10 years. With this in mind, to ensure that data generated from current genotyping platforms continues to be of use, we have designed and utilized SNP-based capture probes from several thousand existing and publicly available probes from Axiom® and KASP™ genotyping platforms. We have validated our capture probes in a targeted genotyping by sequencing protocol using 31 previously genotyped UK elite hexaploid wheat accessions. Data comparisons between targeted genotyping by sequencing, Axiom® array genotyping and KASP™ genotyping assays, identified a set of 3256 probes which reliably bring together targeted genotyping by sequencing data with the previously available marker data set. As such, these probes are likely to be of considerable value to the wheat community. The probe details, full probe sequences and a custom built analysis pipeline may be freely downloaded from the CerealsDB website (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/sequence_capture.php).


Subject(s)
Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Triticum/genetics , DNA Probes , Oligonucleotide Array Sequence Analysis , Polyploidy
3.
Plant Biotechnol J ; 16(1): 165-175, 2018 01.
Article in English | MEDLINE | ID: mdl-28500796

ABSTRACT

The importance of wheat as a food crop makes it a major target for agricultural improvements. As one of the most widely grown cereal grains, together with maize and rice, wheat is the leading provider of calories in the global diet, constituting 29% of global cereal production in 2015. In the last few decades, however, yields have plateaued, suggesting that the green revolution, at least for wheat, might have run its course and that new sources of genetic variation are urgently required. The overall aim of our work was to identify novel variation that may then be used to enable the breeding process. As landraces are a potential source of such diversity, here we have characterized the A.E. Watkins Collection alongside a collection of elite accessions using two complementary high-density and high-throughput genotyping platforms. While our results show the importance of using the appropriate SNP collection to compare diverse accessions, they also show that the Watkins Collection contains a substantial amount of novel genetic diversity which has either not been captured in current breeding programmes or which has been lost through previous selection pressures. As a consequence of our analysis, we have identified a number of accessions which carry an array of novel alleles along with a number of interesting chromosome rearrangements which confirm the variable nature of the wheat genome.


Subject(s)
Triticum/genetics , Genome, Plant/genetics , Genotype , Polymorphism, Single Nucleotide/genetics
4.
Ann Bot ; 121(2): 229-240, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29216335

ABSTRACT

Background and Aims: Bread wheat (Triticum aestivum) has been through a severe genetic bottleneck as a result of its evolution and domestication. It is therefore essential that new sources of genetic variation are generated and utilized. This study aimed to generate genome-wide introgressed segments from Aegilops speltoides. Introgressions generated from this research will be made available for phenotypic analysis. Methods: Aegilops speltoides was crossed as the male parent to T. aestivum 'Paragon'. The interspecific hybrids were then backcrossed to Paragon. Introgressions were detected and characterized using the Affymetrix Axiom Array and genomic in situ hybridization (GISH). Key Results: Recombination in the gametes of the F1 hybrids was at a level where it was possible to generate a genetic linkage map of Ae. speltoides. This was used to identify 294 wheat/Ae. speltoides introgressions. Introgressions from all seven linkage groups of Ae. speltoides were found, including both large and small segments. Comparative analysis showed that overall macro-synteny is conserved between Ae. speltoides and T. aestivum, but that Ae. speltoides does not contain the 4A/5A/7B translocations present in wheat. Aegilops speltoides has been reported to carry gametocidal genes, i.e. genes that ensure their transmission through the gametes to the next generation. Transmission rates of the seven Ae. speltoides linkage groups introgressed into wheat varied. A 100 % transmission rate of linkage group 2 demonstrates the presence of the gametocidal genes on this chromosome. Conclusions: A high level of recombination occurs between the chromosomes of wheat and Ae. speltoides, leading to the generation of large numbers of introgressions with the potential for exploitation in breeding programmes. Due to the gametocidal genes, all germplasm developed will always contain a segment from Ae. speltoides linkage group 2S, in addition to an introgression from any other linkage group.


Subject(s)
Aegilops/genetics , Genes, Plant/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cytogenetics , Genes, Plant/physiology , Germination/genetics , In Situ Hybridization , Inbreeding , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics , Seeds/genetics , Seeds/physiology
5.
Nature ; 491(7426): 705-10, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23192148

ABSTRACT

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.


Subject(s)
Bread , Genome, Plant/genetics , Triticum/genetics , Brachypodium/genetics , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Evolution, Molecular , Genes, Plant/genetics , Genomics , Multigene Family/genetics , Oryza/genetics , Polymorphism, Single Nucleotide/genetics , Polyploidy , Pseudogenes/genetics , Sequence Alignment , Sequence Analysis, DNA , Triticum/classification , Zea mays/genetics
6.
Plant Biotechnol J ; 15(2): 217-226, 2017 02.
Article in English | MEDLINE | ID: mdl-27459228

ABSTRACT

Despite some notable successes, only a fraction of the genetic variation available in wild relatives has been utilized to produce superior wheat varieties. This is as a direct result of the lack of availability of suitable high-throughput technologies to detect wheat/wild relative introgressions when they occur. Here, we report on the use of a new SNP array to detect wheat/wild relative introgressions in backcross progenies derived from interspecific hexaploid wheat/Ambylopyrum muticum F1 hybrids. The array enabled the detection and characterization of 218 genomewide wheat/Am. muticum introgressions, that is a significant step change in the generation and detection of introgressions compared to previous work in the field. Furthermore, the frequency of introgressions detected was sufficiently high to enable the construction of seven linkage groups of the Am. muticum genome, thus enabling the syntenic relationship between the wild relative and hexaploid wheat to be determined. The importance of the genetic variation from Am. muticum introduced into wheat for the development of superior varieties is discussed.


Subject(s)
Genetic Variation , Poaceae/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Genetic Linkage , Genome, Plant , Genotype , Genotyping Techniques/methods , Nucleic Acid Hybridization , Polymorphism, Single Nucleotide , Synteny
7.
Plant Biotechnol J ; 15(3): 390-401, 2017 03.
Article in English | MEDLINE | ID: mdl-27627182

ABSTRACT

Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Triticum/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genotype
8.
Ann Bot ; 120(3): 457-470, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911016

ABSTRACT

Background and Aims: The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Methods: Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Key Results: Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. Conclusions: To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment.


Subject(s)
Haploidy , Plant Roots/growth & development , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping , Genotype , Phenotype , Triticum/growth & development
9.
BMC Bioinformatics ; 17: 256, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27342803

ABSTRACT

BACKGROUND: The increase in human populations around the world has put pressure on resources, and as a consequence food security has become an important challenge for the 21st century. Wheat (Triticum aestivum) is one of the most important crops in human and livestock diets, and the development of wheat varieties that produce higher yields, combined with increased resistance to pests and resilience to changes in climate, has meant that wheat breeding has become an important focus of scientific research. In an attempt to facilitate these improvements in wheat, plant breeders have employed molecular tools to help them identify genes for important agronomic traits that can be bred into new varieties. Modern molecular techniques have ensured that the rapid and inexpensive characterisation of SNP markers and their validation with modern genotyping methods has produced a valuable resource that can be used in marker assisted selection. CerealsDB was created as a means of quickly disseminating this information to breeders and researchers around the globe. DESCRIPTION: CerealsDB version 3.0 is an online resource that contains a wide range of genomic datasets for wheat that will assist plant breeders and scientists to select the most appropriate markers for use in marker assisted selection. CerealsDB includes a database which currently contains in excess of a million putative varietal SNPs, of which several hundreds of thousands have been experimentally validated. In addition, CerealsDB also contains new data on functional SNPs predicted to have a major effect on protein function and we have constructed a web service to encourage data integration and high-throughput programmatic access. CONCLUSION: CerealsDB is an open access website that hosts information on SNPs that are considered useful for both plant breeders and research scientists. The recent inclusion of web services designed to federate genomic data resources allows the information on CerealsDB to be more fully integrated with the WheatIS network and other biological databases.


Subject(s)
Polymorphism, Single Nucleotide , Triticum/genetics , Breeding , Crops, Agricultural/genetics , Database Management Systems , Genomics , Genotyping Techniques , Humans , Internet , User-Computer Interface
10.
Plant Biotechnol J ; 14(5): 1195-206, 2016 May.
Article in English | MEDLINE | ID: mdl-26466852

ABSTRACT

In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.


Subject(s)
Genome, Plant/genetics , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Triticum/genetics , Breeding , Gene Pool , Genetic Markers , Genetic Variation , Genotype , Genotyping Techniques , Polyploidy
11.
Plant Genome ; 17(1): e20288, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36718796

ABSTRACT

Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.


Subject(s)
Chromosomes , Triticum , Triticum/genetics , Phenotype , Edible Grain/genetics , Genetic Variation
12.
Plant Biotechnol J ; 11(3): 279-95, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23279710

ABSTRACT

Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)-based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP-based wheat markers have been made available via the use of next-generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial-scale breeding programmes. To identify exome-based co-dominant SNP-based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re-sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co-dominant. Validation of a subset of these putative co-dominant markers confirmed that 96% were true polymorphisms and 65% were co-dominant SNP assays. The new co-dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web-based database to facilitate their use on genotyping programmes worldwide.


Subject(s)
Exome/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Chromosome Mapping , Polyploidy
13.
BMC Bioinformatics ; 13: 219, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22943283

ABSTRACT

BACKGROUND: Food security is an issue that has come under renewed scrutiny amidst concerns that substantial yield increases in cereal crops are required to feed the world's booming population. Wheat is of fundamental importance in this regard being one of the three most important crops for both human consumption and livestock feed; however, increase in crop yields have not kept pace with the demands of a growing world population. In order to address this issue, plant breeders require new molecular tools to help them identify genes for important agronomic traits that can be introduced into elite varieties. Studies of the genome using next-generation sequencing enable the identification of molecular markers such as single nucleotide polymorphisms that may be used by breeders to identify and follow genes when breeding new varieties. The development and application of next-generation sequencing technologies has made the characterisation of SNP markers in wheat relatively cheap and straightforward. There is a growing need for the widespread dissemination of this information to plant breeders. DESCRIPTION: CerealsDB is an online resource containing a range of genomic datasets for wheat (Triticum aestivum) that will assist plant breeders and scientists to select the most appropriate markers for marker assisted selection. CerealsDB includes a database which currently contains in excess of 100,000 putative varietal SNPs, of which several thousand have been experimentally validated. In addition, CerealsDB contains databases for DArT markers and EST sequences, and links to a draft genome sequence for the wheat variety Chinese Spring. CONCLUSION: CerealsDB is an open access website that is rapidly becoming an invaluable resource within the wheat research and plant breeding communities.


Subject(s)
Breeding , Databases, Nucleic Acid , Polymorphism, Single Nucleotide , Triticum/genetics , Expressed Sequence Tags , Genomics , Humans , Internet , Software , User-Computer Interface
14.
Plant Biotechnol J ; 10(6): 733-42, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22703335

ABSTRACT

Bread wheat, Triticum aestivum, is an allohexaploid composed of the three distinct ancestral genomes, A, B and D. The polyploid nature of the wheat genome together with its large size has limited our ability to generate the significant amount of sequence data required for whole genome studies. Even with the advent of next-generation sequencing technology, it is still relatively expensive to generate whole genome sequences for more than a few wheat genomes at any one time. To overcome this problem, we have developed a targeted-capture re-sequencing protocol based upon NimbleGen array technology to capture and characterize 56.5 Mb of genomic DNA with sequence similarity to over 100 000 transcripts from eight different UK allohexaploid wheat varieties. Using this procedure in conjunction with a carefully designed bioinformatic procedure, we have identified more than 500 000 putative single-nucleotide polymorphisms (SNPs). While 80% of these were variants between the homoeologous genomes, A, B and D, a significant number (20%) were putative varietal SNPs between the eight varieties studied. A small number of these latter polymorphisms were experimentally validated using KASPar technology and 94% proved to be genuine. The procedures described here to sequence a large proportion of the wheat genome, and the various SNPs identified should be of considerable use to the wider wheat community.


Subject(s)
Exome , Genome, Plant , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Triticum/genetics , Alleles , Polyploidy , Species Specificity
15.
Front Plant Sci ; 13: 841855, 2022.
Article in English | MEDLINE | ID: mdl-35498663

ABSTRACT

The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.

16.
Plant Biotechnol J ; 9(9): 1086-99, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21627760

ABSTRACT

Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza.


Subject(s)
Genetic Linkage , Polymorphism, Single Nucleotide , Polyploidy , Triticum/genetics , Alleles , Biomarkers/analysis , Chromosome Mapping , Databases, Genetic , Expressed Sequence Tags , Gene Library , Genotype , Polymerase Chain Reaction/methods , Sequence Alignment
17.
Plant Physiol ; 154(3): 1347-60, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20813907

ABSTRACT

Fertilization in angiosperms depends on a complex cellular "courtship" between haploid pollen and diploid pistil. These pollen-pistil interactions are regulated by a diversity of molecules, many of which remain to be identified and characterized. Thus, it is unclear to what extent these processes are conserved among angiosperms, a fact confounded by limited sampling across taxa. Here, we report the analysis of pistil-expressed genes in Senecio squalidus (Asteraceae), a species from euasterid II, a major clade for which there are currently no data on pistil-expressed genes. Species from the Asteraceae characteristically have a "semidry stigma," intermediate between the "wet" and "dry" stigmas typical of the majority of angiosperms. Construction of pistil-enriched cDNA libraries for S. squalidus allowed us to address two hypotheses: (1) stigmas of S. squalidus will express genes common to wet and dry stigmas and genes specific to the semidry stigma characteristic of the Asteraceae; and (2) genes potentially essential for pistil function will be conserved between diverse angiosperm groups and therefore common to all currently available pistil transcriptome data sets, including S. squalidus. Our data support both these hypotheses. The S. squalidus pistil transcriptome contains novel genes and genes previously identified in pistils of species with dry stigmas and wet stigmas. Comparative analysis of the five pistil transcriptomes currently available (Oryza sativa, Crocus sativus, Arabidopsis thaliana, Nicotiana tabacum, and S. squalidus), representing four major angiosperm clades and the three stigma states, identified novel genes and conserved genes potentially regulating pollen-pistil interaction pathways common to monocots and eudicots.


Subject(s)
Flowers/metabolism , Gene Expression Profiling , Senecio/genetics , Arabidopsis/genetics , Comparative Genomic Hybridization , Crocus/genetics , Gene Expression Regulation, Plant , Genes, Plant , Oryza/genetics , RNA, Plant/genetics , Senecio/metabolism , Sequence Alignment , Nicotiana/genetics
18.
Ann Bot ; 108(4): 687-98, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21752792

ABSTRACT

BACKGROUND: Pollen-pistil interactions are an essential prelude to fertilization in angiosperms and determine compatibility/incompatibility. Pollen-pistil interactions have been studied at a molecular and cellular level in relatively few families. Self-incompatibility (SI) is the best understood pollen-pistil interaction at a molecular level where three different molecular mechanisms have been identified in just five families. Here we review studies of pollen-pistil interactions and SI in the Asteraceae, an important family that has been relatively understudied in these areas of reproductive biology. SCOPE: We begin by describing the historical literature which first identified sporophytic SI (SSI) in species of Asteraceae, the SI system later identified and characterized at a molecular level in the Brassicaceae. Early structural and cytological studies in these two families suggested that pollen-pistil interactions and SSI were similar, if not the same. Recent cellular and molecular studies in Senecio squalidus (Oxford ragwort) have challenged this belief by revealing that despite sharing the same genetic system of SSI, the Brassicaceae and Asteraceae molecular mechanisms are different. Key cellular differences have also been highlighted in pollen-stigma interactions, which may arise as a consequence of the Asteraceae possessing a 'semi-dry' stigma, rather than the 'dry' stigma typical of the Brassicaceae. The review concludes with a summary of recent transcriptomic analyses aimed at identifying proteins regulating pollen-pistil interactions and SI in S. squalidus, and by implication the Asteraceae. The Senecio pistil transcriptome contains many novel pistil-specific genes, but also pistil-specific genes previously shown to play a role in pollen-pistil interactions in other species. CONCLUSIONS: Studies in S. squalidus have shown that stigma structure and the molecular mechanism of SSI in the Asteraceae and Brassicaceae are different. The availability of a pool of pistil-specific genes for S. squalidus offers an opportunity to elucidate the molecular mechanisms of pollen-pistil interactions and SI in the Asteraceae.


Subject(s)
Pollen/physiology , Self-Incompatibility in Flowering Plants/physiology , Senecio/physiology , Pollen/genetics , Reproduction/physiology , Senecio/genetics , Transcriptome
19.
Sci Rep ; 11(1): 2451, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510240

ABSTRACT

Earliness per se (Eps) genes are reported to be important in fine-tuning flowering time in wheat independently of photoperiod (Ppd) and vernalisation (Vrn). Unlike Ppd and Vrn genes, Eps have relatively small effects and their physiological effect along with chromosomal position are not well defined. We evaluated eight lines derived from crossing two vernalisation insensitive lines, Paragon and Baj (late and early flowering respectively), to study the detailed effects of two newly identified QTLs, Eps-7D and Eps-2B and their interactions under field conditions. The effect of both QTLs was minor and was affected by the allelic status of the other. While the magnitude of effect of these QTLs on anthesis was similar, they are associated with very different profiles of pre-anthesis development which also depends on their interaction. Eps-7D affected both duration before and after terminal spikelet while not affecting final leaf number (FLN) so Eps-7D-early had a faster rate of leaf appearance. Eps-2B acted more specifically in the early reproductive phase and slightly altered FLN without affecting the leaf appearance rate. Both QTLs affected the spike fertility by altering the rate of floret development and mortality. The effect of Eps-2B was very small but consistent in that -late allele tended to produce more fertile florets.


Subject(s)
Epistasis, Genetic , Fertility/genetics , Flowers/physiology , Quantitative Trait Loci/genetics , Triticum/growth & development , Triticum/genetics , Alleles , Analysis of Variance , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Flowers/genetics , Plant Leaves/anatomy & histology , Plant Shoots/anatomy & histology , United Kingdom
20.
Nat Plants ; 7(2): 172-183, 2021 02.
Article in English | MEDLINE | ID: mdl-33526912

ABSTRACT

Bread wheat (Triticum aestivum) is one of the world's most important crops; however, a low level of genetic diversity within commercial breeding accessions can significantly limit breeding potential. In contrast, wheat relatives exhibit considerable genetic variation and so potentially provide a valuable source of novel alleles for use in breeding new cultivars. Historically, gene flow between wheat and its relatives may have contributed novel alleles to the bread wheat pangenome. To assess the contribution made by wheat relatives to genetic diversity in bread wheat, we used markers based on single nucleotide polymorphisms to compare bread wheat accessions, created in the past 150 years, with 45 related species. We show that many bread wheat accessions share near-identical haplotype blocks with close relatives of wheat's diploid and tetraploid progenitors, while some show evidence of introgressions from more distant species and structural variation between accessions. Hence, introgressions and chromosomal rearrangements appear to have made a major contribution to genetic diversity in cultivar collections. As gene flow from relatives to bread wheat is an ongoing process, we assess the impact that introgressions might have on future breeding strategies.


Subject(s)
Bread , Chromosomal Instability , Gene Flow , Genome, Plant , Plant Breeding/methods , Triticum/genetics , Genetic Variation , Genotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL